30 releases (6 stable)
1.4.0 | Sep 12, 2022 |
---|---|
1.3.0 | Aug 30, 2022 |
1.2.0 | Jul 25, 2022 |
1.1.0 | Dec 25, 2021 |
0.1.10 | Nov 23, 2020 |
#303 in Machine learning
92 downloads per month
125KB
3K
SLoC
neat-gru-rust
Documentation
Examples
Right now this is the only working example. You can run it via:
cargo run --example example
How to use
In Cargo.toml
:
[dependencies]
neat-gru = 1.3.0"
Create a struct that implements the Game
trait
use neat_gru::game::Game;
use neat_gru::neural_network::NeuralNetwork;
use neat_gru::train::{Train, HistoricTopology};
struct Player {
pub net: NeuralNetwork<f64>,
}
impl Player {
pub fn new(net: NeuralNetwork<f64>) -> Player {
Player {
net,
}
}
}
struct Simulation {
players: Vec<Player>,
}
impl Simulation {
pub fn new() -> Simulation {
Simulation {
players: Vec::new(),
}
}
}
impl Game<f64> for Simulation {
// Loss function
fn run_generation(&mut self) -> Vec<f64> {
let inputs = get_inputs();
self.players.iter().map(|p| {
let output = p.net.compute(inputs);
let scores = compute_score(output, target);
scores
}).collect()
}
// Reset networks
fn reset_players(&mut self, nets: Vec<NeuralNetwork<f64>>) {
self.players.clear();
self.players = nets
.into_iter()
.map(Player::new)
.collect();
}
// Called at the end of training
fn post_training(&mut self, history: &[HistoricTopology<f64>]) {
// Iter on best topologies and upload the best one
}
}
Async run_generation (has to be run inside an async runtime like Tokio)
#[async_trait]
impl GameAsync<f64> for Simulation {
// Loss function
async fn run_generation(&mut self) -> Vec<f64> {
let inputs = get_inputs().await;
self.players.iter().map(|p| {
let output = p.net.compute(inputs);
let scores = compute_score(output, target);
scores
}).collect()
}
}
Launch a training
fn run_sim() {
let mut sim = Simulation::new();
let mut runner = Train::new(&mut sim);
runner
.inputs(input_count)
.outputs(output_count as i32)
.iterations(nb_generations as i32)
.max_layers((hidden_layers + 2) as i32)
.max_per_layers(hidden_layers as i32)
.max_species(max_species as i32)
.max_individuals(max_individuals as i32)
.delta_threshold(2.) // Delta parameter from NEAT paper
.formula(0.8, 0.8, 0.3) // c1, c2 and c3 from NEAT paper
.access_train_object(Box::new(|train| {
let species_count = train.species_count();
println!("Species count: {}", species_count);
})) // Callback called after `reset_players` that gives you access to the train object during training
.start(); // .start_async().await for async version
}
Dependencies
~3.5–5MB
~100K SLoC