#computer-vision #tracking #kalman #filtering

mot-rs

Dead simple multi object tracking in Rust

15 releases

0.1.2 Jun 21, 2024
0.1.1 Oct 31, 2023
0.1.0 Jul 28, 2023
0.0.12 Jul 24, 2023
0.0.1 Apr 23, 2023

#445 in Algorithms

Download history 1/week @ 2024-07-23 9/week @ 2024-09-10 10/week @ 2024-09-17 69/week @ 2024-09-24 6/week @ 2024-10-01

847 downloads per month

MIT license

72KB
739 lines

Very naive implementation of Multi-object tracking in Rust programming language

Table of Contents

About

Why is it even exists when there are a lot of other solutions (better perfomance, better logic, better overall and etc.)?

It is simple as that:

What I cannot create, I do not understand Richard Feynman

What is this good for?

You can use this library to track vehicles / peoples and etc. when you don't need that much accuracy or ReID.

Are more advanced algorithms considered to be implemented in futher?

Yes, I do think so. I guess that SORT will be the next one.

If you want to you can contribute via opening Pull Request

I've implemented two metrics to match objects:

How to use

Add dependency to your Cargo.toml file

[package]
....

[dependencies]
...
mot-rs = "0.1.0"
...

Let's create really synthetic example and define similar trajectories for three objects. We're using pretty simple MOT algorithm, so no hard tasks for now. We are going to use itertools just to simplify zipping trajectories.

use mot_rs::mot::{
    SimpleTracker,
    SimpleBlob
};
use mot_rs::utils::{
    Rect
};

fn main() {
    let bboxes_one: Vec<Vec<f32>> = vec![vec![236, -25, 386, 35], vec![237, -24, 387, 36], vec![238, -22, 388, 38], vec![236, -20, 386, 40], vec![236, -19, 386, 41], vec![237, -18, 387, 42], vec![237, -18, 387, 42], vec![238, -17, 388, 43], vec![237, -14, 387, 46], vec![237, -14, 387, 46], vec![237, -12, 387, 48], vec![237, -12, 387, 48], vec![237, -11, 387, 49], vec![237, -11, 387, 49], vec![237, -10, 387, 50], vec![237, -10, 387, 50], vec![237, -8, 387, 52], vec![237, -8, 387, 52], vec![236, -7, 386, 53], vec![236, -7, 386, 53], vec![236, -6, 386, 54], vec![236, -6, 386, 54], vec![236, -2, 386, 58], vec![235, 0, 385, 60], vec![236, 2, 386, 62], vec![236, 5, 386, 65], vec![236, 9, 386, 69], vec![235, 12, 385, 72], vec![235, 14, 385, 74], vec![233, 16, 383, 76], vec![232, 26, 382, 86], vec![233, 28, 383, 88], vec![233, 40, 383, 100], vec![233, 30, 383, 90], vec![232, 22, 382, 82], vec![232, 34, 382, 94], vec![232, 21, 382, 81], vec![233, 40, 383, 100], vec![232, 40, 382, 100], vec![232, 40, 382, 100], vec![232, 36, 382, 96], vec![232, 53, 382, 113], vec![232, 50, 382, 110], vec![233, 55, 383, 115], vec![232, 50, 382, 110], vec![234, 68, 384, 128], vec![231, 49, 381, 109], vec![232, 68, 382, 128], vec![231, 31, 381, 91], vec![232, 64, 382, 124], vec![233, 71, 383, 131], vec![231, 64, 381, 124], vec![231, 74, 381, 134], vec![231, 64, 381, 124], vec![230, 77, 380, 137], vec![232, 82, 382, 142], vec![232, 78, 382, 138], vec![232, 78, 382, 138], vec![231, 79, 381, 139], vec![231, 79, 381, 139], vec![231, 91, 381, 151], vec![232, 78, 382, 138], vec![232, 78, 382, 138], vec![233, 90, 383, 150], vec![232, 92, 382, 152], vec![232, 92, 382, 152], vec![233, 98, 383, 158], vec![232, 100, 382, 160], vec![231, 92, 381, 152], vec![233, 110, 383, 170], vec![234, 92, 384, 152], vec![234, 92, 384, 152], vec![234, 110, 384, 170], vec![234, 92, 384, 152], vec![233, 104, 383, 164], vec![234, 111, 384, 171], vec![234, 106, 384, 166], vec![234, 106, 384, 166], vec![233, 124, 383, 184], vec![236, 125, 386, 185], vec![236, 125, 386, 185], vec![232, 120, 382, 180], vec![236, 131, 386, 191], vec![232, 132, 382, 192], vec![238, 139, 388, 199], vec![236, 141, 386, 201], vec![232, 151, 382, 211], vec![236, 145, 386, 205], vec![236, 145, 386, 205], vec![231, 133, 381, 193], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208], vec![237, 148, 387, 208]];
    let bboxes_two: Vec<Vec<f32>> = vec![vec![321, -25, 471, 35], vec![322, -24, 472, 36], vec![323, -22, 473, 38], vec![321, -20, 471, 40], vec![321, -19, 471, 41], vec![322, -18, 472, 42], vec![322, -18, 472, 42], vec![323, -17, 473, 43], vec![322, -14, 472, 46], vec![322, -14, 472, 46], vec![322, -12, 472, 48], vec![322, -12, 472, 48], vec![322, -11, 472, 49], vec![322, -11, 472, 49], vec![322, -10, 472, 50], vec![322, -10, 472, 50], vec![322, -8, 472, 52], vec![322, -8, 472, 52], vec![321, -7, 471, 53], vec![321, -7, 471, 53], vec![321, -6, 471, 54], vec![321, -6, 471, 54], vec![321, -2, 471, 58], vec![320, 0, 470, 60], vec![321, 2, 471, 62], vec![321, 5, 471, 65], vec![321, 9, 471, 69], vec![320, 12, 470, 72], vec![320, 14, 470, 74], vec![318, 16, 468, 76], vec![317, 26, 467, 86], vec![318, 28, 468, 88], vec![318, 40, 468, 100], vec![318, 30, 468, 90], vec![317, 22, 467, 82], vec![317, 34, 467, 94], vec![317, 21, 467, 81], vec![318, 40, 468, 100], vec![317, 40, 467, 100], vec![317, 40, 467, 100], vec![317, 36, 467, 96], vec![317, 53, 467, 113], vec![317, 50, 467, 110], vec![318, 55, 468, 115], vec![317, 50, 467, 110], vec![319, 68, 469, 128], vec![316, 49, 466, 109], vec![317, 68, 467, 128], vec![316, 31, 466, 91], vec![317, 64, 467, 124], vec![318, 71, 468, 131], vec![316, 64, 466, 124], vec![316, 74, 466, 134], vec![316, 64, 466, 124], vec![315, 77, 465, 137], vec![317, 82, 467, 142], vec![317, 78, 467, 138], vec![317, 78, 467, 138], vec![316, 79, 466, 139], vec![316, 79, 466, 139], vec![316, 91, 466, 151], vec![317, 78, 467, 138], vec![317, 78, 467, 138], vec![318, 90, 468, 150], vec![317, 92, 467, 152], vec![317, 92, 467, 152], vec![318, 98, 468, 158], vec![317, 100, 467, 160], vec![316, 92, 466, 152], vec![318, 110, 468, 170], vec![319, 92, 469, 152], vec![319, 92, 469, 152], vec![319, 110, 469, 170], vec![319, 92, 469, 152], vec![318, 104, 468, 164], vec![319, 111, 469, 171], vec![319, 106, 469, 166], vec![319, 106, 469, 166], vec![318, 124, 468, 184], vec![321, 125, 471, 185], vec![321, 125, 471, 185], vec![317, 120, 467, 180], vec![321, 131, 471, 191], vec![317, 132, 467, 192], vec![323, 139, 473, 199], vec![321, 141, 471, 201], vec![317, 151, 467, 211], vec![321, 145, 471, 205], vec![321, 145, 471, 205], vec![316, 133, 466, 193], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208], vec![322, 148, 472, 208]];
    let bboxes_three: Vec<Vec<f32>> = vec![vec![151, -25, 301, 35], vec![152, -24, 302, 36], vec![153, -22, 303, 38], vec![151, -20, 301, 40], vec![151, -19, 301, 41], vec![152, -18, 302, 42], vec![152, -18, 302, 42], vec![153, -17, 303, 43], vec![152, -14, 302, 46], vec![152, -14, 302, 46], vec![152, -12, 302, 48], vec![152, -12, 302, 48], vec![152, -11, 302, 49], vec![152, -11, 302, 49], vec![152, -10, 302, 50], vec![152, -10, 302, 50], vec![152, -8, 302, 52], vec![152, -8, 302, 52], vec![151, -7, 301, 53], vec![151, -7, 301, 53], vec![151, -6, 301, 54], vec![151, -6, 301, 54], vec![151, -2, 301, 58], vec![150, 0, 300, 60], vec![151, 2, 301, 62], vec![151, 5, 301, 65], vec![151, 9, 301, 69], vec![150, 12, 300, 72], vec![150, 14, 300, 74], vec![148, 16, 298, 76], vec![147, 26, 297, 86], vec![148, 28, 298, 88], vec![148, 40, 298, 100], vec![148, 30, 298, 90], vec![147, 22, 297, 82], vec![147, 34, 297, 94], vec![147, 21, 297, 81], vec![148, 40, 298, 100], vec![147, 40, 297, 100], vec![147, 40, 297, 100], vec![147, 36, 297, 96], vec![147, 53, 297, 113], vec![147, 50, 297, 110], vec![148, 55, 298, 115], vec![147, 50, 297, 110], vec![149, 68, 299, 128], vec![146, 49, 296, 109], vec![147, 68, 297, 128], vec![146, 31, 296, 91], vec![147, 64, 297, 124], vec![148, 71, 298, 131], vec![146, 64, 296, 124], vec![146, 74, 296, 134], vec![146, 64, 296, 124], vec![145, 77, 295, 137], vec![147, 82, 297, 142], vec![147, 78, 297, 138], vec![147, 78, 297, 138], vec![146, 79, 296, 139], vec![146, 79, 296, 139], vec![146, 91, 296, 151], vec![147, 78, 297, 138], vec![147, 78, 297, 138], vec![148, 90, 298, 150], vec![147, 92, 297, 152], vec![147, 92, 297, 152], vec![148, 98, 298, 158], vec![147, 100, 297, 160], vec![146, 92, 296, 152], vec![148, 110, 298, 170], vec![149, 92, 299, 152], vec![149, 92, 299, 152], vec![149, 110, 299, 170], vec![149, 92, 299, 152], vec![148, 104, 298, 164], vec![149, 111, 299, 171], vec![149, 106, 299, 166], vec![149, 106, 299, 166], vec![148, 124, 298, 184], vec![151, 125, 301, 185], vec![151, 125, 301, 185], vec![147, 120, 297, 180], vec![151, 131, 301, 191], vec![147, 132, 297, 192], vec![153, 139, 303, 199], vec![151, 141, 301, 201], vec![147, 151, 297, 211], vec![151, 145, 301, 205], vec![151, 145, 301, 205], vec![146, 133, 296, 193], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208], vec![152, 148, 302, 208]];
    let mut mot = SimpleTracker::new(5, 15.0);
    let dt = 1.0/25.00; // emulate 25 fps

    for (bbox_one, bbox_two, bbox_three) in itertools::izip!(bboxes_one, bboxes_two, bboxes_three) {
        let blob_one = SimpleBlob::new_with_dt(Rect::new(bbox_one[0], bbox_one[1], bbox_one[2]-bbox_one[0], bbox_one[3]-bbox_one[1]), dt);
        let blob_two = SimpleBlob::new_with_dt(Rect::new(bbox_two[0],bbox_two[1],bbox_two[2] -bbox_two[0],bbox_two[3]- bbox_two[1]), dt);
        let blob_three = SimpleBlob::new_with_dt(Rect::new(bbox_three[0],bbox_three[1],bbox_three[2] -bbox_three[0],bbox_three[3]- bbox_three[1]), dt);

        match mot.match_objects(vec![blob_one, blob_two, blob_three]) {
            Ok(_) => {},
            Err(err) => {
                println!("{:?}", err);
            }
        };

        println!("id;track");
        for object in &mot.objects {
            print!("{};", object.0);
            let track = object.1.get_track();
            for (idx, pt) in track.iter().enumerate() {
                if idx == track.len() - 1 {
                    print!("{},{}", pt.x, pt.y);
                } else {
                    print!("{},{}|", pt.x, pt.y);
                }
            }
            println!();
        }
    }
}

If we plot results on a single image we should get something like:

References

Dependencies

~5.5MB
~97K SLoC