#elliptic #curve #modular-arithmetic #point

modular_math

A simple modular arithmetic crate for U256

7 releases

0.1.6 May 11, 2024
0.1.5 May 6, 2024

#386 in Cryptography

Download history 1/week @ 2024-07-23 1/week @ 2024-09-17 17/week @ 2024-09-24

309 downloads per month

MIT license

37KB
748 lines

Modular Arithmetic Library

crates.io Docs.rs

modular_math is a Rust library designed for high-performance modular arithmetic operations on 256-bit integers (U256). This library provides robust functionalities such as

  • Modular Arithmetic
    • addition
    • subtraction
    • multiplication
    • exponentiation
    • inverse
    • divide
    • square
    • square root (tonelli shanks algorithm)
    • equivalent (congruent)
  • Elliptical Curves
    • Point addition
    • Point doubling
    • Scalar multiplication
    • Scalar multiplication with Generator Point
    • BN128 Curve
    • Secp256k1 Curve
  • Galois Fields (Work in Progress)
    • Polynomial

under a specified modulus, specifically optimized for cryptographic and zero knowledge applications where such operations are frequently required.

Features

  • Comprehensive Modular Arithmetic and Elliptical Curves: Offers all the necessary modular arithmetic operations on U256 and BN128 and Secp256k1 elliptic curves.
  • Safe Overflow Management: Utilizes U512 for intermediate results to prevent overflows.
  • Flexible Type Support: Features IntoU256 trait to convert various integer and string types to U256.
  • High Performance: Optimized for performance without compromising on accuracy, especially suitable for cryptographic and zero knowledge applications.
  • Ease of Use Macros : Provides macros for easy usage of number under a modulus.

Structure

The workspace is organized as follows:

  • src/curves/: Contains the implementation of elliptic curves and points on the curve.
  • src/galois_field/: Contains the implementation of Galois fields, which are used in the elliptic curve operations.
  • src/mod_math/: Contains modular arithmetic functions.
  • src/num_mod/: Contains the implementation of a number modulo some modulus.

Usage

First, add this to your Cargo.toml:

[dependencies]
modular_math = "0.1.6"
ModMath
use modular_math::ModMath;
use primitive_types::U256;

let modulus = "101";
let mod_math = ModMath::new(modulus);

// Addition
let sum = mod_math.add(8, 12);
assert_eq!(sum, U256::from(3));

// Subtraction
let sub = mod_math.sub(8, 12);
assert_eq!(sub, U256::from(97));

// Multiplication
let mul = mod_math.mul(8, 12);
assert_eq!(mul, U256::from(96));

// Multiplicative Inverse
let inv = mod_math.inv(8);
assert_eq!(inv, U256::from(77));

// Exponentiation
let exp = mod_math.exp(8, 12);
assert_eq!(exp, U256::from(64));

// FromStr
let mod_math = ModMath::new("115792089237316195423570985008687907852837564279074904382605163141518161494337");
let div = mod_math.div("32670510020758816978083085130507043184471273380659243275938904335757337482424" , "55066263022277343669578718895168534326250603453777594175500187360389116729240");
assert_eq!(div, U256::from_dec_str("13499648161236477938760301359943791721062504425530739546045302818736391397630"));
Elliptic Curves

Create an Elliptic Curve

use primitive_types::U256;
use modular_math::elliptical_curve::{Curve, ECPoint};

fn BN128() -> Curve {
  let a = U256::zero();
  let b = U256::from(3);
  let field_modulus = U256::from_dec_str("21888242871839275222246405745257275088696311157297823662689037894645226208583").unwrap();
  let curve_order = U256::from_dec_str("21888242871839275222246405745257275088548364400416034343698204186575808495617").unwrap();
  let G = ECPoint::new(U256::from(1), U256::from(2));
  
  let bn128 = Curve::new(a, b, field_modulus, curve_order, G);

  bn128
}

BN128 Usage

use modular_math::curves::BN128;
use primitive_types::U256;

let bn128 = BN128();
let G = bn128.G;

// Scalar Multiplication
let double_G = bn128.point_multiplication_scalar(2, &G);

// Point Addition
let triple_G = bn128.point_addition(&double_G, &G);

// Point Doubling
let quad_G = bn128.point_doubling(&double_G);

Number Under Modulus
use modular_math::number_mod::NumberUnderMod as NM;
use primitive_types::U256;
use modular_math::num_mod;

// Add
let a = num_mod!(10, 13);
let b = num_mod!(6, 13);
let sum = a + b;
assert_eq!(sum, U256::from(3));

// Sub
let sub = a - b;
assert_eq!(sub, U256::from(4));

// Mul
let mul = a * b;
assert_eq!(mul, U256::from(8));

// Div
let div = a / b;
assert_eq!(div, U256::from(11));

// Neg
let neg = -a;
assert_eq!(neg, U256::from(3));

let c = num_mod!(10, 13);
assert!(a == c);

Todo

  • Square root under modulus
  • Additive Inverse
  • BigNumber Tests
  • Elliptic Curves
  • Galois Field
  • Bilinear Pairing

License

This project is licensed under the MIT License - see the LICENSE file for details.

Dependencies

~605KB
~10K SLoC