21 releases
0.5.4 | Oct 11, 2024 |
---|---|
0.5.3 | Aug 29, 2023 |
0.5.2 | Jul 4, 2023 |
0.5.1 | Feb 4, 2023 |
0.1.3 | Mar 24, 2019 |
#17 in Machine learning
191,249 downloads per month
Used in 299 crates
(5 directly)
77KB
1.5K
SLoC
linregress
A Rust library providing an easy to use implementation of ordinary least squared linear regression with some basic statistics.
Documentation
License
This project is licensed under the MIT License. See LICENSE for details.
lib.rs
:
linregress
provides an easy to use implementation of ordinary
least squared linear regression with some basic statistics.
See RegressionModel
for details.
The builder FormulaRegressionBuilder
is used to construct a model from a
table of data and an R-style formula or a list of columns to use.
Currently only very simple formulae are supported,
see FormulaRegressionBuilder.formula
for details.
Example
use linregress::{FormulaRegressionBuilder, RegressionDataBuilder};
let y = vec![1., 2. ,3. , 4., 5.];
let x1 = vec![5., 4., 3., 2., 1.];
let x2 = vec![729.53, 439.0367, 42.054, 1., 0.];
let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.];
let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)];
let data = RegressionDataBuilder::new().build_from(data)?;
let formula = "Y ~ X1 + X2 + X3";
let model = FormulaRegressionBuilder::new()
.data(&data)
.formula(formula)
.fit()?;
let parameters: Vec<_> = model.iter_parameter_pairs().collect();
let pvalues: Vec<_> = model.iter_p_value_pairs().collect();
let standard_errors: Vec<_> = model.iter_se_pairs().collect();
assert_eq!(
parameters,
vec![
("X1", -1.0000000000000004),
("X2", 1.5508427875232655e-15),
("X3", -1.4502288259166107e-15),
]
);
assert_eq!(
standard_errors,
vec![
("X1", 9.22799842631787e-13),
("X2", 4.184801029355531e-15),
("X3", 2.5552590991720465e-15),
]
);
assert_eq!(
pvalues,
vec![
("X1", 5.874726257570879e-13),
("X2", 0.7740647742008093),
("X3", 0.6713674042015161),
]
);
Dependencies
~4.5MB
~90K SLoC