#lambda #calculus #combinator

lambda_calculus

A simple, zero-dependency implementation of pure lambda calculus in Safe Rust

41 releases (17 stable)

3.3.0 May 30, 2024
3.2.2 Sep 20, 2023
3.2.1 Aug 17, 2023
3.1.0 Aug 22, 2022
0.12.0 May 26, 2017

#39 in Math

Download history 2/week @ 2024-09-17 97/week @ 2024-09-24 4/week @ 2024-12-03 126/week @ 2024-12-10 20/week @ 2024-12-17

150 downloads per month
Used in 10 crates (6 directly)

CC0 license

180KB
2.5K SLoC

lambda_calculus

license current version docs.rs actively maintained

lambda_calculus is a simple, zero-dependency implementation of pure lambda calculus in Safe Rust.

Features

  • a parser for lambda expressions, both in classic and De Bruijn index notation
  • 7 β-reduction strategies
  • a set of standard terms (combinators)
  • lambda-encoded boolean, pair, tuple, option and result data types
  • single-pair-encoded list
  • Church-, Scott- and Parigot-encoded numerals and lists
  • Stump-Fu (embedded iterators)- and binary-encoded numerals
  • signed numbers

Installation

Include the library by adding the following to your Cargo.toml:

[dependencies]
lambda_calculus = "3"

Compilation features:

  • backslash_lambda: changes the display of lambdas from λ to \
  • encoding: builds the data encoding modules; default feature

Example feature setup in Cargo.toml:

[dependencies.lambda_calculus]
version = "3"
default-features = false # do not build the data encoding modules
features = ["backslash_lambda"] # use a backslash lambda

Examples

Comparing classic and De Bruijn index notation

code:

use lambda_calculus::data::num::church::{succ, pred};

fn main() {
    println!("SUCC := {0} = {0:?}", succ());
    println!("PRED := {0} = {0:?}", pred());
}

stdout:

SUCC := λa.λb.λc.b (a b c) = λλλ2(321)
PRED := λa.λb.λc.a (λd.λe.e (d b)) (λd.c) (λd.d) = λλλ3(λλ1(24))(λ2)(λ1)

Parsing lambda expressions

code:

use lambda_calculus::*;

fn main() {
    assert_eq!(
        parse(&"λa.λb.λc.b (a b c)", Classic),
        parse(&"λλλ2(321)", DeBruijn)
    );
}

Showing β-reduction steps

code:

use lambda_calculus::*;
use lambda_calculus::data::num::church::pred;

fn main() {
    let mut expr = app!(pred(), 1.into_church());

    println!("{} order β-reduction steps for PRED 1 are:", NOR);

    println!("{}", expr);
    while expr.reduce(NOR, 1) != 0 {
        println!("{}", expr);
    }
}

stdout:

normal order β-reduction steps for PRED 1 are:
(λa.λb.λc.a (λd.λe.e (d b)) (λd.c) (λd.d)) (λa.λb.a b)
λa.λb.(λc.λd.c d) (λc.λd.d (c a)) (λc.b) (λc.c)
λa.λb.(λc.(λd.λe.e (d a)) c) (λc.b) (λc.c)
λa.λb.(λc.λd.d (c a)) (λc.b) (λc.c)
λa.λb.(λc.c ((λd.b) a)) (λc.c)
λa.λb.(λc.c) ((λc.b) a)
λa.λb.(λc.b) a
λa.λb.b

Comparing the number of steps for different reduction strategies

code:

use lambda_calculus::*;
use lambda_calculus::data::num::church::fac;

fn main() {
    let expr = app(fac(), 3.into_church());

    println!("comparing normalizing orders' reduction step count for FAC 3:");
    for &order in [NOR, APP, HNO, HAP].iter() {
        println!("{}: {}", order, expr.clone().reduce(order, 0));
    }
}

stdout:

comparing normalizing orders' reduction step count for FAC 3:
normal: 46
applicative: 39
hybrid normal: 46
hybrid applicative: 39

Comparing different numeral encodings

code:

use lambda_calculus::*;

fn main() {
    println!("comparing different encodings of number 3 (De Bruijn indices):");
    println!("  Church encoding: {:?}", 3.into_church());
    println!("   Scott encoding: {:?}", 3.into_scott());
    println!(" Parigot encoding: {:?}", 3.into_parigot());
    println!("Stump-Fu encoding: {:?}", 3.into_stumpfu());
    println!("  binary encoding: {:?}", 3.into_binary());
}

stdout:

comparing different encodings of number 3 (De Bruijn indices):
  Church encoding: λλ2(2(21))
   Scott encoding: λλ1(λλ1(λλ1(λλ2)))
 Parigot encoding: λλ2(λλ2(λλ2(λλ1)1)(2(λλ1)1))(2(λλ2(λλ1)1)(2(λλ1)1))
Stump-Fu encoding: λλ2(λλ2(2(21)))(λλ2(λλ2(21))(λλ2(λλ21)(λλ1)))
  binary encoding: λλλ1(13)

No runtime deps

Features