14 releases (3 stable)
1.2.0 | Jun 25, 2023 |
---|---|
1.1.0 | May 29, 2023 |
1.0.0 | Apr 8, 2023 |
0.4.5 | Mar 23, 2023 |
0.1.0 | Mar 14, 2023 |
#1263 in Parser implementations
46 downloads per month
60KB
1.5K
SLoC
LamCalc: An implementation for Lambda Calculus
LamCalc implements untyped Lambda Calculus, Inspired by Lambda Calculus: Basic Interpreter in Rust (Part 2).
Current status: stabalized v1.
Features
lambda!
macro for convenient definition.- Implemented using De Bruijn index.
- Parser for expressions/definitions/files.
- WASM package for web application.
Quick View
use lamcalc::{lambda, Error, parser::parse_exp};
fn main () -> Result<(), Error> {
// define using macro
let tt = lambda!(x. y. x); // use macro to define lambda
let ff = lambda!(x. (y. y)); // add parentheses for clarity
let and = lambda!(x.y.x y x); // space between dots are not necessary
// multiple printing format
println!("and = {}", and); // print lambda
println!("and = {:#}", and); // lambda with De Bruijn index
println!("and = {}", and.purify()); // De Bruijn encoding
// use braces to refer to previously defined lambda
let mut and_f_t = lambda!({and} {ff} {tt});
and_f_t.simplify()?; // get simplified result
assert_eq!(and_f_t, ff);
// parse lambda expression string
let y_combinator = lambda!(f.(x. f (x x)) (x. f (x x)));
let y_str = r#"\f.(\x. f (x x)) (\x. f (x x))"#;
let (y2, _) = parse_exp(y_str)?;
assert_eq!(y2, y_combinator);
Ok(())
}
See examples/
for more.
Dependencies
~2–5MB
~98K SLoC