58 stable releases (4 major)

new 4.7.0 Apr 12, 2025
4.6.0 Feb 28, 2025
4.4.0 Jan 10, 2025
4.3.0 Nov 27, 2024
0.6.0 Oct 2, 2023

#5 in Machine learning

Download history 352/week @ 2024-12-21 631/week @ 2024-12-28 827/week @ 2025-01-04 1265/week @ 2025-01-11 951/week @ 2025-01-18 711/week @ 2025-01-25 1088/week @ 2025-02-01 1478/week @ 2025-02-08 1431/week @ 2025-02-15 2400/week @ 2025-02-22 1418/week @ 2025-03-01 1084/week @ 2025-03-08 1387/week @ 2025-03-15 1616/week @ 2025-03-22 1319/week @ 2025-03-29 1351/week @ 2025-04-05

5,770 downloads per month
Used in 18 crates (12 directly)

Apache-2.0

405KB
2.5K SLoC

FastEmbed-rs 🦀

Rust library for generating vector embeddings, reranking locally!

Crates.io MIT Licensed Semantic release

🍕 Features

🔍 Not looking for Rust?

🤖 Models

Text Embedding

Sparse Text Embedding

Image Embedding

Reranking

🚀 Installation

Run the following command in your project directory:

cargo add fastembed

Or add the following line to your Cargo.toml:

[dependencies]
fastembed = "4"

📖 Usage

Text Embeddings

use fastembed::{TextEmbedding, InitOptions, EmbeddingModel};

// With default InitOptions
let model = TextEmbedding::try_new(Default::default())?;

// With custom InitOptions
let model = TextEmbedding::try_new(
    InitOptions::new(EmbeddingModel::AllMiniLML6V2).with_show_download_progress(true),
)?;

let documents = vec![
    "passage: Hello, World!",
    "query: Hello, World!",
    "passage: This is an example passage.",
    // You can leave out the prefix but it's recommended
    "fastembed-rs is licensed under Apache  2.0"
    ];

 // Generate embeddings with the default batch size, 256
 let embeddings = model.embed(documents, None)?;

 println!("Embeddings length: {}", embeddings.len()); // -> Embeddings length: 4
 println!("Embedding dimension: {}", embeddings[0].len()); // -> Embedding dimension: 384

Image Embeddings

use fastembed::{ImageEmbedding, ImageInitOptions, ImageEmbeddingModel};

// With default InitOptions
let model = ImageEmbedding::try_new(Default::default())?;

// With custom InitOptions
let model = ImageEmbedding::try_new(
    ImageInitOptions::new(ImageEmbeddingModel::ClipVitB32).with_show_download_progress(true),
)?;

let images = vec!["assets/image_0.png", "assets/image_1.png"];

// Generate embeddings with the default batch size, 256
let embeddings = model.embed(images, None)?;

println!("Embeddings length: {}", embeddings.len()); // -> Embeddings length: 2
println!("Embedding dimension: {}", embeddings[0].len()); // -> Embedding dimension: 512

Candidates Reranking

use fastembed::{TextRerank, RerankInitOptions, RerankerModel};

let model = TextRerank::try_new(
    RerankInitOptions::new(RerankerModel::BGERerankerBase).with_show_download_progress(true),
)?;

let documents = vec![
    "hi",
    "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear, is a bear species endemic to China.",
    "panda is animal",
    "i dont know",
    "kind of mammal",
    ];

// Rerank with the default batch size, 256 and return document contents
let results = model.rerank("what is panda?", documents, true, None)?;
println!("Rerank result: {:?}", results);

Alternatively, local model files can be used for inference via the try_new_from_user_defined(...) methods of respective structs.

✊ Support

To support the library, please donate to our primary upstream dependency, ort - The Rust wrapper for the ONNX runtime.

📄 LICENSE

Apache 2.0 © 2024

Dependencies

~17–34MB
~580K SLoC