5 releases
0.2.0 | Feb 2, 2024 |
---|---|
0.1.3 | Jan 30, 2024 |
0.1.2 | Jan 23, 2024 |
0.1.1 | Jan 23, 2024 |
0.1.0 | Jan 23, 2024 |
#1022 in Machine learning
410KB
11K
SLoC
faiss-next
faiss-next
is a simple rust bindings for facebookresearch/faiss. This crate is is inspired by Enet4/faiss-rs.
Windows
, Linux
and Macos
is supported. facebookresearch/faiss
v1.7.4
is wrapped currently.
WARN: test case won't give the correct result on windows
with gpu
enabled on a nvidia 1050
laptop with cuda11.8
, don't know why yet, might be a problem of hecked source code?
faiss-next
requires faiss
compiled with FAISS_ENABLE_C_API=ON
and BUILD_SHARED_LIBS=ON
in advance. Please checkout README.md
of faiss-next-sys
for further info about building faiss
from source.
Installation
Before linking with faiss-next
, env variable FAISS_DIR
should set and point to the dir faiss
installed. If FAISS_DIR
is not set, build.rs
will search /usr
or /usr/local
or $HOME/faiss
(%USERPROFILE%/faiss
on windows
) for library and include heeders by default.
[dependencies]
faiss-next = {version = "*", features = ["gpu"] }
Tutorial
use faiss_next::*;
use ndarray::{s, Array2};
use ndarray_rand::*;
fn main() {
//create index
let mut index = index_factory(128, "Flat", FaissMetricType::METRIC_L2).expect("failed to create cpu index");
//create some random feature
let feats = Array2::random((1024, 128), rand::distributions::Uniform::new(0., 1.));
//get query from position 42
let query = feats.slice(s![42..43, ..]);
//add features in index
index.add(feats.as_slice_memory_order().unwrap()).expect("failed to add feature");
//do the search
let ret = index.search(query.as_slice_memory_order().unwrap(), 1).expect("failed to search");
assert_eq!(ret.labels[0], 42i64);
//move index from cpu to gpu, only available when gpu feature is enabled
#[cfg(feature = "gpu")]
{
let index = index.into_gpu(0).expect("failed to move index to gpu");
let ret = index.search(query.as_slice_memory_order().unwrap(), 1).expect("failed to search");
assert_eq!(ret.labels[0], 42i64);
}
}
Dependencies
~0.5–3MB
~58K SLoC