#embedding #api #chat #model #sdk #text #ernie

erniebot-rs

A unofficial Rust library for the Ernie API

7 unstable releases (3 breaking)

0.4.1 Apr 21, 2024
0.3.2 Apr 16, 2024
0.2.1 Apr 9, 2024
0.1.1 Mar 1, 2024

#792 in Web programming

37 downloads per month

MIT license

59KB
1K SLoC

erniebot-rs

Unofficial Baidu Ernie(Wenxin Yiyan, Qianfan) Rust SDK, currently supporting three modules: chat, text embedding (embedding), and text-to-image generation (text2image).

update in 2024/04/09: Add support for the bce-reranker-base-v1 rerank model

update in 2024/04/21 For sync mode, use ureq instead of reqwest_blocking, hence it can improve the compatibility with tokio.

Installation

Add the following to your Cargo.toml file:

[dependencies]
erniebot-rs = "0.4.1"

Authentication

Before using, import AK and SK into environment variables:

export QIANFAN_AK=***  
export QIANFAN_SK=***

Chat

Currently supported models by default include:

  • ErnieBotTurbo
  • ErnieBot
  • Ernie40

These models can be invoked in the following manner:

fn test_invoke() {  
    let chat = ChatEndpoint::new(ChatModel::ErnieBotTurbo).unwrap();  
    let messages = vec![  
        Message {  
            role: Role::User,  
            content: "hello, I'm a developer. I'm developing a rust SDK for qianfan LLM. If you get this message, that means I successfully send you this message using invoke method".to_string(),  
            ..Default::default()  
        },  
    ];  
    let options = vec![  
        ChatOpt::Temperature(0.5),  
        ChatOpt::TopP(0.5),  
        ChatOpt::TopK(50),  
    ];  
    let response = chat.invoke(&messages, &options).unwrap();  
    let result = response.get_chat_result().unwrap();  
    println!("{}", result);  
}

For other models, use new_with_custom_endpoint to invoke. The field name is the last part of the Qianfan API. Taking llama_2_70b as an example, the API address is https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_70b. The invocation method is as follows:

fn test_custom_endpoint() {  
    let chat = ChatEndpoint::new_with_custom_endpoint("llama_2_70b").unwrap();  
    let messages = vec![  
        Message {  
            role: Role::User,  
            content: "hello, I'm a developer. I'm developing a rust SDK for qianfan LLM. If you get this message, that means I successfully send you this message using a custom endpoint".to_string(),  
            ..Default::default()  
        },  
    ];  
    let options = Vec::new();  
    let response = chat.invoke(&messages, &options).unwrap();  
    let result = response.get_chat_result().unwrap();  
    println!("{}", result);  
}

Supports four invocation methods: invoke (synchronous non-streaming), ainvoke (asynchronous non-streaming), stream (synchronous streaming), and astream (asynchronous streaming).

For example, the astream invocation method is as follows:

fn test_astream() {  
    let chat = ChatEndpoint::new(ChatModel::ErnieBotTurbo).unwrap();  
    let messages = vec![  
        Message {  
            role: Role::User,  
            content: "hello, I'm a developer. I'm developing a rust SDK for qianfan LLM. If you get this message, that means I successfully send you this message using async stream method. Now reply to me a message as long as possible so that I can test if this function doing well".to_string(),  
            ..Default::default()  
        },  
    ];  
    let options = Vec::new();  
    let rt = Runtime::new().unwrap();  
    rt.block_on(async move {  
        let mut stream_response = chat.astream(&messages, &options).await.unwrap();  
        while let Some(response) = stream_response.next().await {  
            let result = response.get_chat_result().unwrap();  
            print!("{}", result);  
            //flush  
            std::io::stdout().flush().unwrap();  
        }  
    });  
    println!();  
}

For some models, such as ErnieBot, they support the option of passing in functions for invocation. You can refer to examples/chat_with_function.rs for an example.

Please note that due to varying parameter requirements for each specific model, this SDK does not perform local parameter validation but instead passes the parameters to the server for validation. Therefore, if the parameters do not meet the requirements, the server will return an error message.

Embedding

Supports the four models currently (as of 2024/02/26) available on the Qianfan platform:

  • EmbeddingV1
  • BgeLargeZh
  • BgeLargeEn
  • Tao8k

The invocation is similar to chat, supporting both invoke and ainvoke modes:

fn test_async_embedding() {  
    let embedding = EmbeddingEndpoint::new(EmbeddingModel::EmbeddingV1).unwrap();  
    let input = vec![  
        "你好".to_string(),  
        "你叫什么名字".to_string(),  
        "你是谁".to_string(),  
    ];  
    let rt = Runtime::new().unwrap();  
    let embedding_response = rt.block_on(embedding.ainvoke(&input, None)).unwrap();  
    let embedding_results = embedding_response.get_embedding_results().unwrap();  
    println!("{},{}", embedding_results.len(), embedding_results[0].len());  
}

Text2Image

Supports the default StableDiffusionXL and also allows for custom models (such as Wenxin Yige).

fn main() {
    let text2image = Text2ImageEndpoint::new(Text2ImageModel::StableDiffusionXL).unwrap();
    let prompt = "A beautiful sunset over the ocean".to_string();
    let options = vec![
        Text2ImageOpt::Style(Style::DigitalArt),
        Text2ImageOpt::Size(Size::S1024x768),
    ];
    let text2image_response = text2image.invoke(&prompt, &options).unwrap();
    let image_results = text2image_response.get_image_results().unwrap();
    for (index, image_string) in image_results.into_iter().enumerate() {
        let image = base64_to_image(image_string).unwrap();
        let filepath = format!("./tmp/image_{}.png", index);
        image.save(filepath).unwrap();
    }
}

TODO

  • Docs
  • Chat models are numerous, so options may not be complete and require further supplementation.
  • More testing is needed.
  • The Fuyu-8B image understanding model is not yet supported.

Dependencies

~13–24MB
~437K SLoC