26 releases (breaking)
new 0.27.0 | Mar 13, 2025 |
---|---|
0.23.0 | Oct 1, 2024 |
0.22.0 | Sep 4, 2024 |
0.21.1 | Jul 30, 2024 |
0.4.0 | Jul 9, 2022 |
#4 in #gaussian
740KB
14K
SLoC
EGObox - Efficient Global Optimization toolbox
egobox
package is the Python binding of the optimizer named Egor
and the surrogate model Gpx
, mixture of Gaussian processes, from the EGObox libraries written in Rust.
Installation
pip install egobox
Egor optimizer
import numpy as np
import egobox as egx
# Objective function
def f_obj(x: np.ndarray) -> np.ndarray:
return (x - 3.5) * np.sin((x - 3.5) / (np.pi))
# Minimize f_opt in [0, 25]
res = egx.Egor(egx.to_specs([[0.0, 25.0]]), seed=42).minimize(f_obj, max_iters=20)
print(f"Optimization f={res.y_opt} at {res.x_opt}") # Optimization f=[-15.12510323] at [18.93525454]
Gpx surrogate model
import numpy as np
import matplotlib.pyplot as plt
import egobox as egx
# Training
xtrain = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
ytrain = np.array([0.0, 1.0, 1.5, 0.9, 1.0])
gpx = egx.Gpx.builder().fit(xtrain, ytrain)
# Prediction
xtest = np.linspace(0, 4, 100).reshape((-1, 1))
ytest = gpx.predict(xtest)
# Plot
plt.plot(xtest, ytest)
plt.plot(xtrain, ytrain, "o")
plt.show()
See the tutorial notebooks and examples folder for more information on the usage of the optimizer and mixture of Gaussian processes surrogate model.
Dependencies
~22–42MB
~650K SLoC