26 releases (breaking)

new 0.27.0 Mar 13, 2025
0.23.0 Oct 1, 2024
0.22.0 Sep 4, 2024
0.21.1 Jul 30, 2024
0.4.0 Jul 9, 2022

#4 in #gaussian

Apache-2.0

740KB
14K SLoC

EGObox - Efficient Global Optimization toolbox

pytests DOI

egobox package is the Python binding of the optimizer named Egor and the surrogate model Gpx, mixture of Gaussian processes, from the EGObox libraries written in Rust.

Installation

pip install egobox

Egor optimizer

import numpy as np
import egobox as egx

# Objective function
def f_obj(x: np.ndarray) -> np.ndarray:
    return (x - 3.5) * np.sin((x - 3.5) / (np.pi))

# Minimize f_opt in [0, 25]
res = egx.Egor(egx.to_specs([[0.0, 25.0]]), seed=42).minimize(f_obj, max_iters=20)
print(f"Optimization f={res.y_opt} at {res.x_opt}")  # Optimization f=[-15.12510323] at [18.93525454]

Gpx surrogate model

import numpy as np
import matplotlib.pyplot as plt
import egobox as egx

# Training
xtrain = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
ytrain = np.array([0.0, 1.0, 1.5, 0.9, 1.0])
gpx = egx.Gpx.builder().fit(xtrain, ytrain)

# Prediction
xtest = np.linspace(0, 4, 100).reshape((-1, 1))
ytest = gpx.predict(xtest)

# Plot
plt.plot(xtest, ytest)
plt.plot(xtrain, ytrain, "o")
plt.show()

See the tutorial notebooks and examples folder for more information on the usage of the optimizer and mixture of Gaussian processes surrogate model.

Dependencies

~22–42MB
~650K SLoC