1 stable release
1.0.0 | Mar 12, 2024 |
---|
#99 in #rng
25 downloads per month
Used in 2 crates
(via csta)
15KB
288 lines
CSTA
A personal statistics library, with montecarlo support.
Usage
Add csta
to Cargo.toml.
[dependencies]
csta = "1.0.0"
csta_derive = version = "1.0.0"
rand = "0.8.5"
Histogram
let mut hist = Hist::with_buckets(0.0, 6.0, 6);
let mut rng = thread_rng();
for _ in 0..1000 {
let x = rng.gen_range(0.0..6.0);
hist.add(&x);
}
println!("avg: {}, sd: {}", hist.average(), hist.variance().sqrt());
For saving the histogram, the struct contains a save function.
hist.save("./histogram");
As a convenience function, there is save numpy
, which makes the plotting using matplotlib easier.
hist.save_numpy("./histogram");
import matplotlib.pyplot as plt
import numpy as np
[counts, bins] = np.loadtxt("histogram", delimiter=",")
# the first count is a filler, so we remove it
counts = counts[1:]
plt.stairs(counts, bins, fill=True)
plt.show()
A more complete example is on this file. And here the code of the plotter in python.
Randomizable and Montecarlo
Randomizable is a derivable trait to produce a struct with random values.
#[derive(Debug, Randomizable)]
struct Dice<const N: usize>(#[rng(range(1..=N))] usize);
Any randomizable can be used in a Montecarlo iterator.
MonteCarlo::default()
.into_iter()
.take(10)
.for_each(|dice: Dice<6> /* type anotations needed */| {
println!("dice: {:?}", dice);
});
Any tuple of randomizables is randomizable, f64 is randomizable. To see more about the Randomizable derive and montecarlo, go to this file.
Indexing
Provides indexing utilities, used in the ising system.
Markov
Markov chain system. Used in ising and within the Lennard-Jones in particles
Prelude
Commonly used types for easier usage of the library.
Dependencies
~0.5–1MB
~22K SLoC