coordinates_outliers

A simple outlier detection in 2D paths taken

2 unstable releases

0.2.1 Jun 23, 2022
0.1.0 Jun 22, 2022

MIT license

14KB
150 lines

coordinates_outliers

Rust

Find relationships in a series of location assuming [A,B,A] implies A->B->A and A,B are of type Point.

Simple lib to find outliers or path taken less or more frequently than others.

We store location in form of Point(x: f64, y: f64), they are automatically rounded off to 3 decimal places when using new method on Point. We assume x,y are latitude and longitude and don't need more than 3 decimal places of precision.

Use cargo doc --open for documentation or view it here

Relevant xkcd

location precision

Usage:

use location_outliers::{Point, PointPlane};

fn main(){
    let a = Point::new(0.123, 0.123);
    let b = Point::new(1.123, 1.123);
    let c = Point::new(2.123, 2.123);
    let d = Point::new(3.123, 3.123);
    let e = Point::new(0.123, 0.123);
    let f = Point::new(1.123, 1.123);

    let points = vec![a, b, c, d, e, f];

    let k = PointPlane::new(points, 100);

    println!("{:#?}", k);
}

Output:

PointPlane {
    points: {
        "3.123 3.123": 1,
        "1.123 1.123": 2,
        "0.123 0.123": 2,
        "2.123 2.123": 1,
    },
    graph: Graph(
        {
            Connection(
                "3.123-3.123",
                "0.123-0.123",
                Cell {
                    value: 1,
                },
            ),
            Connection(
                "1.123-1.123",
                "2.123-2.123",
                Cell {
                    value: 1,
                },
            ),
            Connection(
                "2.123-2.123",
                "3.123-3.123",
                Cell {
                    value: 1,
                },
            ),
            Connection(
                "0.123-0.123",
                "1.123-1.123",
                Cell {
                    value: 2,
                },
            ),
        },
    ),
    accumulate_xaxis: SimpleAccumulator {
        vec: [
            0.123,
            1.123,
            2.123,
            3.123,
            0.123,
            1.123,
        ],
        mean: 1.289666666666667,
        population_variance: 1.138888888888889,
        min: 0.123,
        min_: 0.123,
        max: 3.123,
        max_: 2.123,
        median: 1.123,
        len: 6,
        capacity: 100,
        fixed_capacity: true,
        last_write_position: 5,
        accumulate: true,
    },
    accumulate_yaxis: SimpleAccumulator {
        vec: [
            0.123,
            1.123,
            2.123,
            3.123,
            0.123,
            1.123,
        ],
        mean: 1.289666666666667,
        population_variance: 1.138888888888889,
        min: 0.123,
        min_: 0.123,
        max: 3.123,
        max_: 2.123,
        median: 1.123,
        len: 6,
        capacity: 100,
        fixed_capacity: true,
        last_write_position: 5,
        accumulate: true,
    },
    capacity: 100,
}

Dependencies

~790KB
~15K SLoC