23 releases (12 breaking)
0.14.2 | Jul 14, 2024 |
---|---|
0.14.1 | Aug 8, 2023 |
0.14.0 | Jun 16, 2023 |
0.13.1 | Mar 1, 2023 |
0.1.0 | Aug 8, 2019 |
#118 in Machine learning
2,364 downloads per month
Used in 2 crates
(via augurs-changepoint)
1MB
1K
SLoC
changepoint - Change point detection for Rust
Changepoint is a library for doing change point detection for streams of data.
See this for more info on the Python bindings.
Algorithms
Includes the following change point detection algorithms:
Bocpd
-- Online Bayesian Change Point Detection Reference.BocpdTruncated
-- Same asBocpd
but truncated the run-length distribution when those lengths are unlikely.Argpcp
-- Gaussian Process Change Point detector Reference
Example
//! A demo of the online Bayesian change point detection on
//! the 3-month Treasury Bill Secondary Market Rate from
//!
//! After this example is run, the file `trasury_bill.ipynb` can be run to generate
//! plots for this dataset.
//!
//! > Board of Governors of the Federal Reserve System (US), 3-Month Treasury Bill: Secondary
//! > Market Rate [TB3MS], retrieved from FRED, Federal Reserve Bank of St. Louis;
//! > https://fred.stlouisfed.org/series/TB3MS, August 5, 2019.
use changepoint::{utils::*, BocpdTruncated, BocpdLike};
use rv::prelude::*;
use std::io;
use std::path::PathBuf;
use std::fs::read_to_string;
fn main() -> io::Result<()> {
// Parse the data from the TB3MS dataset
let mut csv_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
csv_path.push("resources/TB3MS.csv");
let data: String = read_to_string(&csv_path)?;
let (dates, pct_change): (Vec<&str>, Vec<f64>) = data
.lines()
.skip(1)
.map(|line| {
let split: Vec<&str> = line.splitn(2, ',').collect();
let date = split[0];
let raw_pct = split[1];
(date, raw_pct.parse::<f64>().unwrap())
})
.unzip();
// Create the Bocpd processor
let mut cpd = BocpdTruncated::new(
250.0,
NormalGamma::new_unchecked(0.0, 1.0, 1.0, 1.0),
);
// Feed data into change point detector and generate a sequence of run-length distributions
let rs: Vec<Vec<f64>> = pct_change
.iter()
.map(|d| cpd.step(d).into())
.collect();
// Determine most likely change points
let change_points: Vec<usize> = map_changepoints(&rs);
let change_dates: Vec<&str> =
change_points.iter().map(|&i| dates[i]).collect();
// Write output for processing my `trasury_bill.ipynb`.
write_data_and_r(
"treasury_bill_output",
&pct_change,
&rs,
&change_points,
)?;
println!("Most likely dates of changes = {:#?}", change_dates);
Ok(())
}
To run this example, from the source root, run cargo run --example treasury_bill
.
The partner notebook can be used to generate the following plots:
Dependencies
~14MB
~267K SLoC