27 releases
0.5.9 | Mar 28, 2022 |
---|---|
0.5.5 | Feb 28, 2022 |
0.3.8 | Aug 16, 2020 |
0.3.6 | Jul 7, 2020 |
#291 in Machine learning
Used in 2 crates
555KB
13K
SLoC
A simple machine learning toolset
Introduction
This is an auto-difference based learning library.
Features
- A type-less tensor.
- Variable over tensor with support for back propagation.
- Support for common operators, including convolution.
Example
use tensor_rs::tensor::Tensor;
use auto_diff::rand::RNG;
use auto_diff::var::{Module};
use auto_diff::optim::{SGD, Optimizer};
fn main() {
fn func(input: &Tensor) -> Tensor {
input.matmul(&Tensor::from_vec_f32(&vec![2., 3.], &vec![2, 1])).add(&Tensor::from_vec_f32(&vec![1.], &vec![1]))
}
let N = 100;
let mut rng = RNG::new();
rng.set_seed(123);
let data = rng.normal(&vec![N, 2], 0., 2.);
let label = func(&data);
let mut m = Module::new();
let op1 = m.linear(Some(2), Some(1), true);
let weights = op1.get_values().unwrap();
rng.normal_(&weights[0], 0., 1.);
rng.normal_(&weights[1], 0., 1.);
op1.set_values(&weights);
let op2 = op1.clone();
let block = m.func(
move |x| {
op2.call(x)
}
);
let loss_func = m.mse_loss();
let mut opt = SGD::new(3.);
for i in 0..200 {
let input = m.var_value(data.clone());
let y = block.call(&[&input]);
let loss = loss_func.call(&[&y, &m.var_value(label.clone())]);
println!("index: {}, loss: {}", i, loss.get().get_scale_f32());
loss.backward(-1.);
opt.step2(&block);
}
let weights = op1.get_values().expect("");
println!("{:?}, {:?}", weights[0], weights[1]);
}
Dependence
install gfortran is openblas-src = "0.9" is used.
Contributing
Any contribution is welcome and please open an issue by creating a pull request.
Dependencies
~2.5MB
~60K SLoC