3 releases (stable)
2.0.0 | Dec 29, 2022 |
---|---|
1.0.0 | Sep 19, 2022 |
0.1.0 | Jan 2, 2021 |
#538 in Math
200KB
4.5K
SLoC
aegir
Overview
Strongly-typed, compile-time autodifferentiation in Rust.
aegir
is an experimental autodifferentiation framework designed to leverage
the powerful type-system in Rust and avoid runtime as much as humanly
possible. The approach taken resembles that of expression templates, as
commonly used in linear-algebra libraries written in C++.
Key Features
- Built-in arithmetic, linear-algebraic, trigonometric and special operators.
- Infinitely differentiable: Jacobian, Hessian, etc...
- Custom DSL for operator expansion.
- Decoupled/generic tensor type.
Installation
[dependencies]
aegir = "2.0"
Example
#[macro_use]
extern crate aegir;
extern crate rand;
use aegir::{Differentiable, Function, Identifier, Node, ids::{X, Y, W}};
ctx!(Ctx { x: X, y: Y, w: W });
fn main() {
let mut rng = rand::thread_rng();
let mut ctx = Ctx {
x: [0.0; N],
y: 0.0,
w: [0.0; N],
};
let x = X.into_var();
let y = Y.into_var();
let w = W.into_var();
let model = x.dot(w);
// Using standard method calls...
let sse = model.sub(y).squared();
let adj = sse.adjoint(W);
// ...or using aegir! macro
let sse = aegir!((model - y) ^ 2);
let adj = sse.adjoint(W);
for _ in 0..1_000_00 {
// Independent variables:
ctx.x = rng.gen();
// Dependent variable:
ctx.y = ctx.x[0] * 2.0 - ctx.x[1] * 4.0;
// Evaluate gradient:
let g: [f64; N] = adj.evaluate(&ctx).unwrap();
// Update weights:
ctx.w[0] -= 0.01 * g[0];
ctx.w[1] -= 0.01 * g[1];
}
println!("{:?}", ctx.w.to_vec());
}
Dependencies
~3.5MB
~93K SLoC