2 unstable releases
0.2.0 | Dec 29, 2022 |
---|---|
0.1.0 | Sep 19, 2022 |
#43 in #automatic-differentiation
25 downloads per month
Used in aegir
11KB
124 lines
aegir
Overview
Strongly-typed, compile-time autodifferentiation in Rust.
aegir
is an experimental autodifferentiation framework designed to leverage
the powerful type-system in Rust and avoid runtime as much as humanly
possible. The approach taken resembles that of expression templates, as
commonly used in linear-algebra libraries written in C++.
Key Features
- Built-in arithmetic, linear-algebraic, trigonometric and special operators.
- Infinitely differentiable: Jacobian, Hessian, etc...
- Custom DSL for operator expansion.
- Decoupled/generic tensor type.
Installation
[dependencies]
aegir = "1.0"
Example
#[macro_use]
extern crate aegir;
extern crate rand;
use aegir::{Differentiable, Function, Identifier, Node, ids::{X, Y, W}};
db!(Database { x: X, y: Y, w: W });
fn main() {
let mut weights = [0.0, 0.0];
let x = X.into_var();
let y = Y.into_var();
let w = W.into_var();
let model = x.dot(w);
// Using standard method calls...
let sse = model.sub(y).squared();
let adj = sse.adjoint(W);
// ...or using aegir! macro
let sse = aegir!((model - y) ^ 2);
let adj = sse.adjoint(W);
for _ in 0..100000 {
let [x1, x2] = [rand::random::<f64>(), rand::random::<f64>()];
let g = adj.evaluate(Database {
// Independent variables:
x: [x1, x2],
// Dependent variable:
y: x1 * 2.0 - x2 * 4.0,
// Model weights:
w: &weights,
}).unwrap();
weights[0] -= 0.01 * g[0][0];
weights[1] -= 0.01 * g[0][1];
}
println!("{:?}", weights.to_vec());
}
Dependencies
~1.5MB
~35K SLoC