16 releases
new 0.4.3 | Dec 7, 2024 |
---|---|
0.4.2 | Dec 7, 2024 |
0.4.1 | Oct 13, 2024 |
0.4.0 | Dec 24, 2023 |
0.1.2 | Sep 18, 2023 |
#156 in Memory management
Used in 2 crates
110KB
2.5K
SLoC
zone-alloc
This crate provides data types for zone-based (also known as region-based or arena-based) data allocation. Zone-based allocation is a type of memory management in which allocated objects are assigned to a specific zone. Data in the zone remain valid and usable for the lifetime of the zone, and all data in the zone are deallocated together after use.
This crate also provides "registries," which are container types that procide arena allocation of elements and interior mutability with simple runtime borrow checking.
[dependencies]
zone-alloc = "0.3"
Usage
This crate defines three containers:
Arena<T>
- A container that can be used for arena allocation of values of a given type.Registry<T>
- An extension ofArena<T>
that provides integer handles for allocated data.StrongRegistry<H, T>
- An extension ofRegistry<T>
that provides strongly-typed handles for allocated data.KeyedArena<K, T>
- An extension ofArena<T>
that maintains a mapping of keys to values.
Additional Crates
zone-alloc-strong-handle-derive
- Procedural macro for deriving theStrongHandle
interface on simple wrappers around theHandle
type when working withStrongRegistry
.
Features
While the crate is by default built with the Rust standard library, this feature can be removed for no-std environments.
default
-std
std
- Depend on the Rust standard library.may-dangle
- Use the#[may_dangle]
attribute on theDrop
implementation ofElementRef
andElementRefMut
.
Examples
Linked List Nodes with Arena<T>
use zone_alloc::Arena;
#[derive(Debug, PartialEq, Eq)]
struct Node<'a, T> {
parent: Option<&'a Node<'a, T>>,
value: T,
}
impl<'a, T> Node<'a, T> {
pub fn new(parent: Option<&'a Node<'a, T>>, value: T) -> Self {
Self { parent, value }
}
}
fn main() {
let arena = Arena::new();
let node = arena.alloc(Node::new(None, 1));
let node = arena.alloc(Node::new(Some(node), 2));
let node = arena.alloc(Node::new(Some(node), 3));
assert_eq!(node.value, 3);
assert_eq!(node.parent.unwrap().value, 2);
assert_eq!(node.parent.unwrap().parent.unwrap().value, 1);
assert_eq!(node.parent.unwrap().parent.unwrap().parent, None);
}
Circular References with Registry<T>
use zone_alloc::{
Handle,
Registry,
};
#[derive(Debug, PartialEq, Eq)]
struct Node<T> {
parent: Option<Handle>,
value: T,
}
impl<T> Node<T> {
pub fn new(parent: Option<Handle>, value: T) -> Self {
Self { parent, value }
}
}
fn main() {
let registry = Registry::new();
let root_handle = registry.register(Node::new(None, "first"));
let handle = registry.register(Node::new(Some(root_handle), "second"));
let handle = registry.register(Node::new(Some(handle), "third"));
registry.get_mut_unchecked(root_handle).parent = Some(handle);
let node = registry.get(handle).unwrap();
assert_eq!(node.value, "third");
let node = registry.get(node.parent.unwrap()).unwrap();
assert_eq!(node.value, "second");
let node = registry.get(node.parent.unwrap()).unwrap();
assert_eq!(node.value, "first");
let node = registry.get(node.parent.unwrap()).unwrap();
assert_eq!(node.value, "third");
}
Circular References with KeyedRegistry<T>
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(not(feature = "std"))]
use alloc::borrow::ToOwned;
use zone_alloc::KeyedRegistry;
#[derive(Debug, PartialEq, Eq)]
struct Node<K, V> {
parent: Option<K>,
value: V,
}
impl<K, V> Node<K, V> {
pub fn new(parent: Option<K>, value: V) -> Self {
Self { parent, value }
}
}
fn main() {
let registry = KeyedRegistry::new();
registry.register("node-1".to_owned(), Node::new(None, "first"));
registry.register(
"node-2".to_owned(),
Node::new(Some("node-1".to_owned()), "second"),
);
registry.register(
"node-3".to_owned(),
Node::new(Some("node-2".to_owned()), "third"),
);
registry.get_mut_unchecked("node-1").parent = Some("node-3".to_owned());
let node = registry.get("node-3").unwrap();
assert_eq!(node.value, "third");
let node = registry.get(node.parent.as_ref().unwrap()).unwrap();
assert_eq!(node.value, "second");
let node = registry.get(node.parent.as_ref().unwrap()).unwrap();
assert_eq!(node.value, "first");
let node = registry.get(node.parent.as_ref().unwrap()).unwrap();
assert_eq!(node.value, "third");
}
Runtime Borrow Checking
use zone_alloc::{
BorrowError,
Registry,
};
fn main() {
let registry = Registry::new();
registry.register_extend(100..200);
// Multiple immutable borrows on the same element.
let borrow_1 = registry.get(16);
let borrow_2 = registry.get(16);
let borrow_3 = registry.get(16);
assert!(borrow_1.as_ref().is_ok_and(|i| i.eq(&116)));
assert!(borrow_2.as_ref().is_ok_and(|i| i.eq(&116)));
assert!(borrow_3.as_ref().is_ok_and(|i| i.eq(&116)));
// Mutable borrow fails.
assert_eq!(
registry.get_mut(16).err(),
Some(BorrowError::AlreadyBorrowed)
);
// Another element can be borrowed independently.
let borrow_4 = registry.get(32);
assert!(borrow_4.as_ref().is_ok_and(|i| i.eq(&132)));
assert!(borrow_1.as_ref().is_ok_and(|i| i.eq(&116)));
// Only one mutable borrow allowed.
let mut borrow_5 = registry.get_mut(64).unwrap();
assert!(borrow_5.eq(&164));
*borrow_5 *= 2;
assert!(borrow_5.eq(&328));
assert_eq!(
registry.get_mut(64).err(),
Some(BorrowError::AlreadyBorrowed)
);
assert_eq!(registry.get(64).err(), Some(BorrowError::AlreadyBorrowed));
// Refetch to show updated value, and show that previous borrows are still valid.
drop(borrow_5);
let borrow_5 = registry.get(64);
assert!(borrow_5.as_ref().is_ok_and(|i| i.eq(&328)));
assert!(borrow_4.as_ref().is_ok_and(|i| i.eq(&132)));
assert!(borrow_1.as_ref().is_ok_and(|i| i.eq(&116)));
}
Dependencies
~2MB
~27K SLoC