#neural-network #tensorflow #onnx

tract-tensorflow

Tiny, no-nonsense, self contained, TensorFlow and ONNX inference

134 releases

new 0.21.9 Jan 8, 2025
0.21.8 Dec 5, 2024
0.21.7 Sep 23, 2024
0.21.6 Jul 24, 2024
0.1.1 Nov 2, 2018

#1132 in Machine learning

Download history 213/week @ 2024-09-18 164/week @ 2024-09-25 55/week @ 2024-10-02 24/week @ 2024-10-09 14/week @ 2024-10-16 16/week @ 2024-10-23 14/week @ 2024-10-30 9/week @ 2024-11-06 12/week @ 2024-11-13 15/week @ 2024-11-20 10/week @ 2024-11-27 625/week @ 2024-12-04 967/week @ 2024-12-11 71/week @ 2024-12-18 56/week @ 2024-12-25 66/week @ 2025-01-01

1,392 downloads per month
Used in 2 crates

MIT/Apache

1.5MB
14K SLoC

Tract TensorFlow module

Tiny, no-nonsense, self contained, portable inference.

Example

use tract_tensorflow::prelude::*;

// build a simple model that just add 3 to each input component
let tf = tensorflow();
let mut model = tf.model_for_path("tests/models/plus3.pb").unwrap();

// set input input type and shape, then optimize the network.
model.set_input_fact(0, f32::fact(&[3]).into()).unwrap();
let model = model.into_optimized().unwrap();

// we build an execution plan. default input and output are inferred from
// the model graph
let plan = SimplePlan::new(&model).unwrap();

// run the computation.
let input = tensor1(&[1.0f32, 2.5, 5.0]);
let mut outputs = plan.run(tvec![input]).unwrap();

// take the first and only output tensor
let mut tensor = outputs.pop().unwrap();

assert_eq!(tensor, rctensor1(&[4.0f32, 5.5, 8.0]));

Dependencies

~18–33MB
~592K SLoC