5 releases

0.1.4 Jan 13, 2022
0.1.3 Jan 7, 2022
0.1.2 Jan 2, 2022
0.1.1 Jan 2, 2022
0.1.0 Jan 2, 2022

#1596 in Data structures

MIT license

69KB
1.5K SLoC

tongrams: Tons of N-grams

tongrams is a crate to index and query large language models in compressed space, in which the data structures are presented in the following papers:

This is a Rust port of tongrams C++ library.

What can do

  • Store N-gram language models with frequency counts.

  • Look up N-grams to get the frequency counts.

Features

  • Compressed language model. tongrams-rs can store large N-gram language models in very compressed space. For example, the word N-gram datasets (N=1..5) in test_data are stored in only 2.6 bytes per gram.

  • Time and memory efficiency. tongrams-rs employs Elias-Fano Trie, which cleverly encodes a trie data structure consisting of N-grams through Elias-Fano codes, enabling fast lookups in compressed space.

  • Pure Rust. tongrams-rs is written only in Rust and can be easily pluged into your Rust codes.

Installation

To use tongrams, depend on it in your Cargo manifest:

# Cargo.toml

[dependencies]
tongrams = "0.1"

Input data format

The file format of N-gram counts files is the same as that used in tongrams, a modified Google format, where

  • one separate file for each distinct value of N (order) lists one gram per row,
  • each header row <number_of_grams> indicates the number of N-grams in the file,
  • tokens in a gram <gram> are sparated by a space (e.g., the same time), and
  • a gram <gram> and the count <count> are sparated by a horizontal tab.
<number_of_grams>
<gram1><TAB><count1>
<gram2><TAB><count2>
<gram3><TAB><count3>
...

For example,

61516
the // parent	1
the function is	22
the function a	4
the function to	1
the function and	1
...

Examples

The following code uses datasets in test_data at the root of this repository.

use tongrams::EliasFanoTrieCountLm;

// File names of N-grams.
let filenames = vec![
    "../test_data/1-grams.sorted.gz",
    "../test_data/2-grams.sorted.gz",
    "../test_data/3-grams.sorted.gz",
];

// Builds the language model from n-gram counts files.
let lm = EliasFanoTrieCountLm::from_gz_files(&filenames).unwrap();

// Creates the instance for lookup.
let mut lookuper = lm.lookuper();

// Gets the count of a query N-gram written in a space-separated string.
assert_eq!(lookuper.with_str("vector"), Some(182));
assert_eq!(lookuper.with_str("in order"), Some(47));
assert_eq!(lookuper.with_str("the same memory"), Some(8));
assert_eq!(lookuper.with_str("vector is array"), None);

// Gets the count of a query N-gram formed by a string array.
assert_eq!(lookuper.with_tokens(&["vector"]), Some(182));
assert_eq!(lookuper.with_tokens(&["in", "order"]), Some(47));
assert_eq!(lookuper.with_tokens(&["the", "same", "memory"]), Some(8));
assert_eq!(lookuper.with_tokens(&["vector", "is", "array"]), None);

// Serializes the index into a writable stream.
let mut data = vec![];
lm.serialize_into(&mut data).unwrap();

// Deserializes the index from a readable stream.
let other = EliasFanoTrieCountLm::deserialize_from(&data[..]).unwrap();
assert_eq!(lm.num_orders(), other.num_orders());
assert_eq!(lm.num_grams(), other.num_grams());

Licensing

This library is free software provided under MIT.

Dependencies

~1.5–2.2MB
~42K SLoC