5 unstable releases
0.3.1 | Dec 6, 2024 |
---|---|
0.3.0 | Dec 6, 2024 |
0.2.1 | Dec 5, 2024 |
0.2.0 | Dec 4, 2024 |
0.1.0 | Dec 4, 2024 |
#69 in Visualization
41 downloads per month
83KB
1.5K
SLoC
spc
SPC (Statistical Process Control) is a method of monitoring and controlling manufacturing or business processes through statistical methods, aimed at ensuring that the process is always in a controlled state, thereby reducing variability and improving quality.
Group Statistics
Support folwing charts:
- Xbar-R Chart
- Xbar-S Chart
- R Chart
- S Chart
Attribute Statistics
Support folwing charts:
- P Chart
- NP Chart
- C Chart
- U Chart
Moving Statistics
Support folwing charts:
- Individuals Chart
- Moving Range Chart
- Moving Average Chart
How to choose an appropriate control chart
SPC Rule
- Rule1Beyond3Sigma
- Rule2Of3Beyond2Sigma
- Rule4Of5Beyond1Sigma
- Rule8PointsAboveOrBelowCenter
- Rule9PointsOnSameSideOfCenter
- Rule14PointsOscillating
- Rule15PointsWithin1Sigma
- Rule6PointsUpOrDown
Examples
use spc_rs::RoundingMode::RoundHalfUp;
use spc_rs::RoundingContext;
use spc_rs::group_stats::{GroupStats, GroupStatsChartType};
use spc_rs::{SpcRule};
pub fn main() {
let v1 = vec![
0.65, 0.75, 0.75, 0.60, 0.70, 0.60, 0.75, 0.60, 0.65, 0.60, 0.80, 0.85, 0.70, 0.65,
0.90, 0.75, 0.75, 0.75, 0.65, 0.60, 0.50, 0.60, 0.80, 0.65, 0.65,
];
let v2 = vec![
0.70, 0.85, 0.80, 0.70, 0.75, 0.75, 0.80, 0.70, 0.80, 0.70, 0.75, 0.75, 0.70, 0.70,
0.80, 0.80, 0.70, 0.70, 0.65, 0.60, 0.55, 0.80, 0.65, 0.60, 0.70,
];
let v3 = vec![
0.65, 0.75, 0.80, 0.70, 0.65, 0.75, 0.65, 0.80, 0.85, 0.60, 0.90, 0.85, 0.75, 0.85,
0.80, 0.75, 0.85, 0.60, 0.85, 0.65, 0.65, 0.65, 0.75, 0.65, 0.70,
];
let v4 = vec![
0.65, 0.85, 0.70, 0.75, 0.85, 0.85, 0.75, 0.75, 0.85, 0.80, 0.50, 0.65, 0.75, 0.75,
0.75, 0.80, 0.70, 0.70, 0.65, 0.60, 0.80, 0.65, 0.65, 0.60, 0.60,
];
let v5 = vec![
0.85, 0.65, 0.75, 0.65, 0.80, 0.70, 0.70, 0.75, 0.75, 0.65, 0.80, 0.70, 0.70, 0.60,
0.85, 0.65, 0.80, 0.60, 0.70, 0.65, 0.80, 0.75, 0.65, 0.70, 0.65,
];
let mut xbar_r_chart_stats = GroupStats::new(5, GroupStatsChartType::XbarRChart).unwrap();
xbar_r_chart_stats.set_group_count(100);
xbar_r_chart_stats.set_rounding_ctx(Some(RoundingContext::new(2, RoundHalfUp)));
for i in 0..v1.len() {
let _r = xbar_r_chart_stats
.add_data(&vec![v1[i], v2[i], v3[i], v4[i], v5[i]])
.unwrap();
}
let ucl = xbar_r_chart_stats.ucl();
let lcl = xbar_r_chart_stats.lcl();
let cl = xbar_r_chart_stats.cl();
let average = xbar_r_chart_stats.average();
let ranges = xbar_r_chart_stats.ranges();
assert_eq!(0.82, ucl);
assert_eq!(0.72, cl);
assert_eq!(0.61, lcl);
println!("average: {:?}",average);
println!("range: {:?}",ranges);
// apply spc rules
let res = xbar_r_chart_stats.apply_rule_validation(vec![
SpcRule::Rule1Beyond3Sigma(1, 3),
SpcRule::Rule2Of3Beyond2Sigma(2, 3, 2),
]);
println!("res: {:#?}", res);
}
Dependencies
~0.7–1MB
~19K SLoC