14 releases (5 breaking)

new 0.6.1 Apr 12, 2025
0.6.0 Apr 10, 2025
0.5.4 Mar 24, 2025
0.4.0 Feb 26, 2025
0.1.0 Feb 4, 2025

#153 in Data structures

Download history 264/week @ 2025-02-03 189/week @ 2025-02-10 128/week @ 2025-02-17 129/week @ 2025-02-24 233/week @ 2025-03-03 212/week @ 2025-03-10 65/week @ 2025-03-17 120/week @ 2025-03-24 6/week @ 2025-03-31 228/week @ 2025-04-07

498 downloads per month

Apache-2.0

1MB
11K SLoC

Rustica

Crates.io Documentation License

Rustica is a comprehensive functional programming library for Rust, bringing powerful abstractions from category theory and functional programming to the Rust ecosystem. It provides a rich set of type classes, data types, and utilities commonly found in functional programming languages.

Overview

Rustica enables idiomatic functional programming in Rust by providing:

  • Type Classes: Core abstractions like Functor, Applicative, and Monad
  • Data Types: Common functional data structures like Maybe, Either, Choice, and IO
  • Monad Transformers: Powerful composition with StateT, ReaderT, and more
  • Composable APIs: Tools for function composition and transformation
  • Pure Functional Style: Patterns for immutable data and explicit effect handling
  • Error Handling: Functional error handling utilities that work across different types

Whether you're coming from Haskell, Scala, or other functional languages, or just want to explore functional programming in Rust, Rustica provides the tools you need.

Getting Started

Add Rustica to your Cargo.toml:

[dependencies]
rustica = "0.6.1"

If you want to use async features, add the async feature:

[dependencies]
rustica = { version = "0.6.1", features = ["async"] }

If you want to use persistent vector collections, add the pvec feature:

[dependencies]
rustica = { version = "0.6.1", features = ["pvec"] }

You can combine multiple features as needed:

[dependencies]
rustica = { version = "0.6.1", features = ["full"] }

Then import the prelude to get started:

use rustica::prelude::*;
use rustica::traits::composable::Composable;

fn main() {
    // Be explicit with type annotations for generic types
    let value: Maybe<i32> = Maybe::just(42);
    let doubled = value.fmap(|x| x * 2);
    assert_eq!(doubled.unwrap(), 84);

    // Example using functional composition
    let add_one = |x: i32| x + 1;
    let multiply_two = |x: i32| x * 2;
    let composed = compose(multiply_two, add_one);
    let result = composed(3); // (3 + 1) * 2 = 8
    println!("Result: {}", result);
}

Features

Type Classes

Rustica implements a wide range of type classes from category theory:

  • Basic Abstractions

    • Functor - For mapping over contained values
    • Applicative - For applying functions in a context
    • Monad - For sequential computations
    • Pure - For lifting values into a context
    • Identity - For accessing values inside contexts
    • Alternative - For choice between computations
  • Algebraic Structures

    • Semigroup - Types with an associative binary operation
    • Monoid - Semigroups with an identity element
    • Foldable - For reducing structures
    • Traversable - For structure-preserving transformations
  • Advanced Concepts

    • Bifunctor - For mapping over two type parameters
    • Contravariant - For reversing function application
    • Category - For abstract composition
    • Arrow - For generalized computation
    • Comonad - For context-aware computations
    • MonadError - For error handling in monadic contexts

Data Types

Rustica provides a rich collection of functional data types:

  • Core Types

    • Maybe<T> - For optional values (like Option<T>)
    • Either<L, R> - For values with two possibilities
    • Id<T> - The identity monad
    • Validated<E, T> - For accumulating validation errors
    • Choice<T> - For representing non-deterministic computations with alternatives
  • Effect Types

    • IO<A> - For pure I/O operations
    • State<S, A> - For stateful computations with thread-safe implementations
    • Reader<E, A> - For environment-based computations
    • Writer<W, A> - For logging operations
    • Cont<R, A> - For continuation-based programming
    • AsyncMonad<A> - For asynchronous operations
  • Special Purpose

    • Various wrapper types (First, Last, Min, Max, etc.)
  • Persistent Collections

    • PersistentVector<T> - An efficient immutable vector with structural sharing and small vector optimization
  • Transformers

    • StateT<S, M, A> - State monad transformer for combining state with other effects
    • ReaderT<E, M, A> - Reader monad transformer for combining environment with other effects
    • WriterT<W, M, A> - Writer monad transformer for combining logging with other effects
    • Bidirectional conversion between monads and their transformer versions
  • Optics

    • Lens - For focusing on parts of structures
    • Prism - For working with sum types

Error Handling Utilities

Rustica provides standardized error handling utilities that work across different functional types:

  • Core Functions

    • sequence - Combines a collection of Result values into a single Result containing a collection
    • traverse - Applies a function that produces a Result to a collection, returning a single Result
    • traverse_validated - Like traverse but collects all errors instead of failing fast
  • Type Conversion

    • ResultExt trait - Extends Result with methods like to_validated() and to_either()
    • WithError trait - Generic trait for any type that can represent error states
    • Conversion functions between Result, Either, and Validated
  • Error Types

    • AppError<M, C> - A structured error type that provides both a message and optional context
    • Helper functions like error() and error_with_context()
use rustica::utils::error_utils::{traverse, sequence, ResultExt};
use rustica::datatypes::validated::Validated;

// Apply a fallible function to each element, collecting into a Result
let inputs = vec!["1", "2", "3"];
let parse_int = |s: &str| s.parse::<i32>().map_err(|_| "parse error");
let results = traverse(inputs, parse_int)?; // Results in Ok(vec![1, 2, 3])

// Combine multiple Results into one
let results_vec = vec![Ok(1), Ok(2), Ok(3)];
let combined = sequence(results_vec)?; // Results in Ok(vec![1, 2, 3])

// Convert a Result to Validated for error accumulation
let result: Result<i32, &str> = Err("Input error");
let validated: Validated<&str, i32> = result.to_validated();

Higher-Kinded Types

Rustica implements a pattern for working with higher-kinded types in Rust, providing:

  • The HKT trait for type constructors
  • The BinaryHKT trait for types with two parameters
  • Utilities for working with HKTs

Persistent Collections

Rustica provides persistent data structures that enable efficient immutable programming:

use rustica::prelude::*;
use rustica::pvec::PersistentVector;
use rustica::pvec; // Import the pvec! macro

// Create using the constructor
let vector = PersistentVector::<i32>::new();
let vector = vector.push_back(1).push_back(2).push_back(3);

// Create using the convenient macro
let vector = pvec![1, 2, 3, 4, 5];

// Access elements
assert_eq!(vector.get(2), Some(&3));

// Modify without changing the original
let updated = vector.update(2, 10);
assert_eq!(updated.get(2), Some(&10));
assert_eq!(vector.get(2), Some(&3)); // Original unchanged

// Small vector optimization for better performance
// Vectors with 8 or fewer elements use an optimized inline representation
let small_vec = pvec![1, 2, 3]; // Uses optimized storage

The PersistentVector provides:

  • Immutability: All operations create new versions without modifying the original
  • Structural Sharing: Efficient memory usage by sharing common structure between versions
  • Thread Safety: Safe to use across threads due to its immutable nature
  • Memory Optimization: Special representation for small vectors to reduce overhead

This makes it ideal for functional programming patterns, concurrent applications, and scenarios where you need to maintain multiple versions of a collection efficiently.

Monad Transformers

Monad transformers let you combine the effects of multiple monads:

use rustica::prelude::*;
use rustica::transformers::StateT;
use rustica::datatypes::maybe::Maybe;

// Define a stateful computation that returns a Maybe
let state_t = StateT::new(|s: i32| {
    // Increment state and return maybe value
    if s > 0 {
        Maybe::just((s + 1, s * 2))
    } else {
        Maybe::nothing()
    }
});

// Run the computation with initial state
let result = state_t.run_state(5);
assert_eq!(result, Maybe::just((6, 10)));

Examples

Working with Maybe (Option)

use rustica::prelude::*;
use rustica::datatypes::maybe::Maybe;
use rustica::traits::functor::Functor;

// Using Maybe for optional values with explicit type annotations
let input = "42";
let maybe_int: Maybe<i32> = input.parse::<i32>().ok().into();  // Convert to Maybe

let result = maybe_int
    .bind(|x: i32| if x > 0 { Maybe::just(x) } else { Maybe::nothing() })
    .fmap(|x: i32| x * 2);

assert_eq!(result, Maybe::just(84));

Working with Choice for non-deterministic computations

use rustica::prelude::*;
use rustica::datatypes::choice::Choice;
use rustica::traits::functor::Functor;
use rustica::traits::applicative::Applicative;

// Create a Choice with a primary value and alternatives
let numbers: Choice<i32> = Choice::new(2, vec![3, 4, 5]);

// Map over all possible values
let doubled: Choice<i32> = numbers.fmap(|x| x * 2);
assert_eq!(*doubled.first().unwrap(), 4);  // Primary value is 2*2=4
assert_eq!(doubled.alternatives(), &[6, 8, 10]);  // Alternatives are [3*2, 4*2, 5*2]

// Apply functions with applicative
let add_one = |x: &i32| x + 1;
let multiply_by_three = |x: &i32| x * 3;
let functions = Choice::new(add_one, vec![multiply_by_three]);

let results = numbers.apply(&functions);
// Primary result is add_one(2) = 3
// Alternatives include all combinations of functions and values

Error Handling with Validated

use rustica::prelude::*;
use rustica::utils::error_utils::traverse_validated;
use rustica::datatypes::validated::Validated;

// Define validation functions
let validate_positive = |x: i32| -> Result<i32, String> {
    if x > 0 {
        Ok(x)
    } else {
        Err(format!("Value must be positive: {}", x))
    }
};

let validate_even = |x: i32| -> Result<i32, String> {
    if x % 2 == 0 {
        Ok(x)
    } else {
        Err(format!("Value must be even: {}", x))
    }
};

// Validate multiple values, collecting all errors
let inputs = vec![10, -5, 7, 8];
let validation_result = traverse_validated(inputs, |x| {
    let x = validate_positive(x)?;
    validate_even(x)
});

// Check if validation passed or inspect all errors
match validation_result {
    Validated::Valid(values) => println!("All values valid: {:?}", values),
    _ => {
        println!("Validation errors:");
        for error in validation_result.errors() {
            println!("  - {}", error);
        }
    }
}

Working with State Monad

use rustica::prelude::*;
use rustica::datatypes::state::State;
use rustica::datatypes::state::{get, put, modify};

// Simple counter with State monad
let counter = State::new(|s: i32| (s, s + 1));
assert_eq!(counter.run_state(5), (5, 6));

// Complex state transformations with bind
let computation = get::<i32>().bind(|value| {
    if value > 10 {
        put(value * 2)
    } else {
        modify(|s: i32| s + 5)
    }
});

// With initial state 5: get returns 5, then we modify to 5+5=10
assert_eq!(computation.exec_state(5), 10);

// With initial state 15: get returns 15, then we put 15*2=30
assert_eq!(computation.exec_state(15), 30);

// Using StateT for combining state with other effects
use rustica::transformers::StateT;

// StateT with Option as the base monad
let safe_counter: StateT<i32, Option<(i32, i32)>, i32> = StateT::new(|s: i32| {
    if s >= 0 {
        Some((s, s + 1))
    } else {
        None // Computation fails for negative numbers
    }
});

assert_eq!(safe_counter.run_state(5), Some((5, 6)));
assert_eq!(safe_counter.run_state(-1), None);

Inspiration

Rustica is inspired by functional programming libraries in other languages:

  • Haskell's standard library
  • Scala's Cats
  • Kotlin's Arrow
  • TypeScript's fp-ts

Contributing

Contributions are welcome! Check the TODO list for areas that need work.

License

Rustica is licensed under the Apache License, version 2.0. See the LICENSE file for details.

Documentation

For detailed documentation, please visit docs.rs/rustica

Dependencies

~1.5–8MB
~63K SLoC