3 stable releases
1.0.2 | Sep 14, 2020 |
---|
#1971 in Algorithms
26 downloads per month
Used in dogs
49KB
195 lines
rl-bandit: A rust bandit implementation
Simple multi-armed bandit algorithm implementation.
Implements several bandit algorithms (most of them found in ``Reinforcement Learning: An Introduction'' by Richard S. Sutton and Andrew G. Barto. It is available for free at http://www.incompleteideas.net/book/the-book-2nd.html).
Usage example
Initialize the bandit algorithm (a few examples)
// ε-greedy algorithm with 10 arms, ε=0.1, initial values of 0
let egreedy1 = EGreedy::new(10, 0.1, 0.0, UpdateType::Average));
// same ε-greedy but non-stationary with step size of 0.1
let egreedy2 = EGreedy::new(10, 0.1, 0.0, UpdateType::Nonstationary(0.1));
// Upper Confidence Bound with 10 arms and c=1
let ucb1 = UCB::new(10, 1.);
// Stochastic gradient with 10 arms, step size of 0.1, with baseline
let sg1 = StochasticGradient::new(10, 0.1, true);
feedback loop:
// choose the best action according to the bandit algorithm
let action = ucb1.choose();
let reward = [...]; // using the action and computing the reward
// updates the bandit algorithm using the reward
ucb1.update(action, reward);
Note: A more detailed example and benchmark can be found in the rl-bandit-bench crate.
implemented algorithms:
- ε-greedy
- optimistic ε-greedy
- Upper-Confidence-Bound (UCB)
- Stochastic Gradient Ascent
- EXP3
library contents
- bandit.rs traits required to implement a bandit algorithm and helper functions
- src/bandits: contains implemented bandit algorithms
Dependencies
~535KB
~10K SLoC