8 releases
0.3.1 | Nov 19, 2021 |
---|---|
0.3.0 | Nov 19, 2021 |
0.2.4 | Nov 19, 2021 |
0.2.2 | Dec 23, 2020 |
0.1.1 | Dec 22, 2020 |
#1329 in Text processing
29KB
440 lines
About
A Naive Bayes Spam Filter implemented in rust. Maybe I'll flush this out more, but it was mostly for self learning purposes.
Resources
Research Sources
- https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
- https://en.wikipedia.org/wiki/Bag-of-words_model
Data Source
lib.rs
:
Rammer, a play on Rust and the fact that spam is classified as Spam or Ham, is a spam/ham classification library.
Here is an example program which trains and saves a new model for later use.
use rammer::{ HSModel, BagOfWords };
fn main() {
let spam_bow = BagOfWords::from_folder("data/train/spam").expect("Folder not found");
let ham_bow = BagOfWords::from_folder("data/train/ham").expect("Folder not found");
let model = HSModel::from_bows(ham_bow, spam_bow);
model.write_to_json("out/models/enron1_model.json");
}
Here is an Example program using an existing model.
use rammer::HSModel;
use std::fs;
use rayon::prelude::*;
fn main() {
let model = HSModel::read_from_json("out/models/enron1_model.json").unwrap();
let spam_answers = validate(&model, "data/validate/spam", "spam", |p| p > 0.8);
let ham_answers = validate(&model, "data/validate/ham", "ham", |p| p < 0.2);
println!("Spam Correctly Classified: {}/{} = {:.4}", spam_answers.0, spam_answers.1, spam_answers.2);
println!("Ham Correctly Classified: {}/{} = {:.4}", ham_answers.0, ham_answers.1, ham_answers.2);
}
fn validate<F>(model: &HSModel, dir: &str, class: &str, is_correct: F) -> (u32, usize, f64)
where F: Fn(f64) -> bool + Sync
{
let ps: Vec<bool> = fs::read_dir(dir)
.expect("folder exists")
.par_bridge()
.filter_map(|maybe_entry| {
maybe_entry.ok().and_then(|entry| {
fs::read_to_string(entry.path())
.ok()
.and_then(|text| Some(model.text_spam_probability(&text[..])))
})
})
.map(|p| { println!("Probability: {:.8}\t\t({})", p, class); is_correct(p) })
.collect();
let num_classified_correctly: u32 = ps
.iter()
.filter_map(|&b| if b { Some(1) } else { None })
.sum();
(
num_classified_correctly,
ps.len(),
num_classified_correctly as f64 / ps.len() as f64
)
}
Dependencies
~2.1–3MB
~64K SLoC