#polynomial #modulo #finite-fields #algebra #field

polynomial-over-finite-prime-field

polynomial over finite prime field

12 releases

0.5.1 Oct 27, 2024
0.5.0 Oct 27, 2024
0.4.3 Apr 16, 2022
0.3.2 Feb 13, 2022
0.1.1 May 1, 2021

#991 in Math

Download history 5/week @ 2024-12-13 1/week @ 2024-12-20 3/week @ 2024-12-27 3/week @ 2025-01-24 14/week @ 2025-01-31 5/week @ 2025-02-07 6/week @ 2025-02-14 3/week @ 2025-02-21 3/week @ 2025-02-28

673 downloads per month
Used in algebraic-equation-over-f…

AGPL-3.0-or-later

24KB
518 lines

PolynomialOverP ring over finite prime field $\mathbb{F}_p[x]$

use num_traits::Zero;
use polynomial_over_finite_prime_field::PolynomialOverP;
let p = PolynomialOverP::<i32>::new(vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3], 17);
let q = PolynomialOverP::<i32>::new(vec![2, 7, 1, 8, 2, 8], 17);
let mut r = p.clone();
let d = r.division(&q);
assert!((d * q + r - p).is_zero());

Polynomial ring over finite prime field $\mathbb{F}_p[x]$

use polynomial_over_finite_prime_field::PolynomialOverP;
let p = PolynomialOverP::<i32>::new(vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3], 17);
let q = PolynomialOverP::<i32>::new(vec![2, 7, 1, 8, 2, 8], 17);
let mut r = p.clone();
let d = r.division(&q);
assert!((d * q + r - p).is_zero());

Licence

AGPL-3.0-or-later

Dependencies

~2MB
~43K SLoC