#polars #excel #xlsx

polars_excel_writer

A Polars extension to serialize dataframes to Excel xlsx files

8 breaking releases

0.9.0 Sep 17, 2024
0.7.0 Feb 25, 2024
0.4.0 Nov 22, 2023

#652 in Encoding

Download history 58/week @ 2024-07-27 74/week @ 2024-08-03 44/week @ 2024-08-10 19/week @ 2024-08-17 232/week @ 2024-08-24 17/week @ 2024-08-31 71/week @ 2024-09-07 179/week @ 2024-09-14 55/week @ 2024-09-21 54/week @ 2024-09-28 97/week @ 2024-10-05 129/week @ 2024-10-12 159/week @ 2024-10-19 458/week @ 2024-10-26 706/week @ 2024-11-02 350/week @ 2024-11-09

1,686 downloads per month

MIT/Apache

97KB
400 lines

polars_excel_writer

The polars_excel_writer crate is a library for serializing Polars dataframes to Excel Xlsx files.

It provides two interfaces for writing a dataframe to an Excel Xlsx file:

  • ExcelWriter a simple Excel serializer that implements the Polars SerWriter trait to write a dataframe to an Excel Xlsx file.

  • PolarsXlsxWriter a more configurable Excel serializer that more closely resembles the interface options provided by the Polars write_excel() dataframe method.

ExcelWriter uses PolarsXlsxWriter to do the Excel serialization which in turn uses the rust_xlsxwriter crate.

Example

An example of writing a Polar Rust dataframe to an Excel file using the ExcelWriter interface.

use chrono::prelude::*;
use polars::prelude::*;

fn main() {
    // Create a sample dataframe for the example.
    let mut df: DataFrame = df!(
        "String" => &["North", "South", "East", "West"],
        "Integer" => &[1, 2, 3, 4],
        "Float" => &[4.0, 5.0, 6.0, 7.0],
        "Time" => &[
            NaiveTime::from_hms_milli_opt(2, 59, 3, 456).unwrap(),
            NaiveTime::from_hms_milli_opt(2, 59, 3, 456).unwrap(),
            NaiveTime::from_hms_milli_opt(2, 59, 3, 456).unwrap(),
            NaiveTime::from_hms_milli_opt(2, 59, 3, 456).unwrap(),
            ],
        "Date" => &[
            NaiveDate::from_ymd_opt(2022, 1, 1).unwrap(),
            NaiveDate::from_ymd_opt(2022, 1, 2).unwrap(),
            NaiveDate::from_ymd_opt(2022, 1, 3).unwrap(),
            NaiveDate::from_ymd_opt(2022, 1, 4).unwrap(),
            ],
        "Datetime" => &[
            NaiveDate::from_ymd_opt(2022, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap(),
            NaiveDate::from_ymd_opt(2022, 1, 2).unwrap().and_hms_opt(2, 0, 0).unwrap(),
            NaiveDate::from_ymd_opt(2022, 1, 3).unwrap().and_hms_opt(3, 0, 0).unwrap(),
            NaiveDate::from_ymd_opt(2022, 1, 4).unwrap().and_hms_opt(4, 0, 0).unwrap(),
        ],
    )
    .unwrap();

    example1(&mut df).unwrap();
    example2(&df).unwrap();
}

// The ExcelWriter interface.
use polars_excel_writer::ExcelWriter;

fn example1(df: &mut DataFrame) -> PolarsResult<()> {
    let mut file = std::fs::File::create("dataframe.xlsx").unwrap();

    ExcelWriter::new(&mut file).finish(df)
}

// The PolarsXlsxWriter interface. For this simple case it is
// similar to the ExcelWriter interface but it has additional
// options to support more complex use cases.
use polars_excel_writer::PolarsXlsxWriter;

fn example2(df: &DataFrame) -> PolarsResult<()> {
    let mut xlsx_writer = PolarsXlsxWriter::new();

    xlsx_writer.write_dataframe(df)?;
    xlsx_writer.save("dataframe2.xlsx")?;

    Ok(())
}

Second output file (same as the first):

See also

  • Changelog: Recent additions and fixes.
  • Performance: Performance comparison with Python based methods.

Dependencies

~26–36MB
~591K SLoC