#statistics #pca


principal component computation using SVD

5 releases

0.1.4 Jul 30, 2023
0.1.3 Jul 29, 2023
0.1.2 Jul 26, 2023
0.1.1 Jul 26, 2023
0.1.0 Jul 26, 2023

#193 in Science

50 downloads per month
Used in pcacsv

MIT license

386 lines

Principal component analysis (PCA)

This is a rust library for performing principal component analysis (PCA). It supports:

  • Fitting a PCA model on a data matrix
  • Projecting data into the PCA space
  • Specifying variance explained tolerance to reduce dimensionality

The implementation follows R's prcomp, and should provide equivalent results with minor differences due to numerical stability and the ambiguity of component sign. Tests confirm the correspondence. The PCA is obtained via SVD.


use pca::PCA;
use ndarray::array;

// Create PCA instance
let mut pca = PCA::new(); 

// Input data 
let x = array![[1.0, 2.0], 
               [3.0, 4.0]];

// Fit PCA model                
pca.fit(x.clone(), None).unwrap();

// Project data
let transformed = pca.transform(x).unwrap();

The fit() method computes the PCA rotation matrix, mean and scaling factors. It takes the input data and an optional variance explained tolerance threshold, to remove PCs with low explanatory power.

The transform() method applies the PCA rotation to project new data into the PCA space.


Use cargo add pca to get the latest version.


Erik Garrison erik.garrison@gmail.com


This project is licensed under the MIT License - see the LICENSE file for details.


~844K SLoC