#oc-wasm #minecraft #opencomputers

no-std oc-wasm-opencomputers

High-level APIs for OpenComputers components

18 releases (11 breaking)

0.12.1 Jun 8, 2024
0.11.0 Jan 8, 2024
0.10.2 Jan 31, 2023
0.9.0 Sep 5, 2022
0.1.0 Jul 26, 2021

#481 in Games

Download history 39/week @ 2024-09-21

1,016 downloads per month

GPL-3.0-only

380KB
6K SLoC

OC-Wasm-OpenComputers provides high-level APIs for accessing components provided by OpenComputers itself in a vanilla Minecraft environment (e.g. redstone blocks, GPUs, screens, etc.) for applications running in the OC-Wasm architecture.


lib.rs:

This crate provides high-level APIs for accessing components provided by OpenComputers in a vanilla Minecraft environment (e.g. redstone blocks, GPUs, screens, etc.).

As a general rule, APIs in this crate accept an Invoker and a Buffer scratch buffer, the latter being used for encoding parameters and decoding return values. This buffer can be reused between API calls to reduce heap allocations. In some cases the return value of an API may borrow from the scratch buffer.

Important

You must depend on oc-wasm-futures with the proper-waker feature in your own application if your chosen executor requires the proper-waker feature.

Example

extern crate alloc;
use alloc::vec::Vec;
use oc_wasm_futures::sleep;
use oc_wasm_opencomputers::prelude::*;
use oc_wasm_opencomputers::{gpu, screen};
use oc_wasm_opencomputers::common::{Dimension, Point};
use oc_wasm_safe::{component, computer};
use core::panic::PanicInfo;

#[global_allocator]
static ALLOC: lol_alloc::AssumeSingleThreaded<lol_alloc::LeakingAllocator> =
	unsafe { lol_alloc::AssumeSingleThreaded::new(lol_alloc::LeakingAllocator::new()) };

#[panic_handler]
fn panic_hook(_: &PanicInfo<'_>) -> ! {
	computer::error("panic occurred");
}

async fn main_impl() -> Result<(), oc_wasm_opencomputers::error::Error> {
	// Grab the one-and-only resources.
	let mut invoker = component::Invoker::take().unwrap();
	let mut lister = component::Lister::take().unwrap();

	// Find the GPU.
	let mut listing = lister.start(Some("gpu"));
	let gpu = *listing.next().expect("no GPU").address();
	let gpu = gpu::Gpu::new(gpu);

	// Find the screen.
	listing = lister.start(Some("screen"));
	let screen = *listing.next().expect("no screen").address();
	let screen = screen::Screen::new(screen);

	// Allocate a scratch buffer to use for method calls.
	let mut buffer = Vec::<u8>::new();

	// Lock the GPU so method calls can be made on it. For gpu_locked’s lifetime, methods can only
	// be called on the GPU, not on anything else. To make method calls on another component, drop
	// this value and recreate it later.
	let mut gpu_locked = gpu.lock(&mut invoker, &mut buffer);

	// Bind the GPU to the screen.
	gpu_locked.bind(*screen.address(), true).await?;

	// Clear the screen.
	gpu_locked.set_foreground(gpu::Colour::Rgb(gpu::Rgb(0x00_FF_FF_FF))).await?;
	gpu_locked.set_background(gpu::Colour::Rgb(gpu::Rgb(0))).await?;
	gpu_locked.fill(Point{x: 1, y: 1}, Dimension{width: 160, height: 80}, ' ').await?;

	// Say hello.
	gpu_locked.set(Point{x: 1, y: 1}, "Hello World!", gpu::TextDirection::Horizontal).await?;

	// Stop running forever.
	loop {
		sleep::for_uptime(core::time::Duration::from_secs(3600)).await;
	}
}

async fn main() -> core::convert::Infallible {
	match main_impl().await {
		Ok(()) => computer::error("main task terminated"),
		Err(e) => computer::error(e.as_str()),
	}
}

#[no_mangle]
pub extern "C" fn run(arg: i32) -> i32 {
   	oc_wasm_cassette::run(arg, async_main)
}

Dependencies

~2MB
~51K SLoC