#neural #computing #stick #api #graph #rand #movidius

mvnc

Wrapper around the Movidius Neural Computing stick C API

8 releases

Uses old Rust 2015

0.3.0 Jan 25, 2018
0.2.0 Jan 23, 2018
0.1.3 Jan 23, 2018

#1435 in Algorithms

MIT license

6MB
410 lines

mvnc

Wrapper around the Movidius Neural Computing stick C API.

On version 0.3.0

In order to increase safety, mutable borrows are now required for Graph.load_tensor and Graph.get_result.

Instead of returning a Slot indicator, a unique id is returned for each loaded tensor, allowing for more reliable association of results.

Minor changes include additional Error values.

Version history

Version Description
0.3.0 Improved safety and documentation
0.2.1 Moved repository to github (version not published)
0.2.0 Complete crate including Slot indicator
0.1.3 Implemented graph module
0.1.2 Implemented device module
0.1.1 Added internal IntoResult trait and readme.md
0.1.0 Implemented log module

Build instructions

The libmvnc.so library from the Movidius™ Neural Compute SDK must be present.

Example

The most recent version of this example can be found at https://github.com/WiebeCnossen/mvnc/blob/master/examples/mnist.rs

extern crate half;
extern crate mvnc;
extern crate rand;

use std::fs::File;
use std::io::{self, Read};

use half::{consts, f16};

use mvnc::{Device, Graph};
use mvnc::graph::Blocking;
use mvnc::log;

use rand::{Rng, ThreadRng};

pub fn main() {
    log::set_log_level(&log::LogLevel::Verbose).expect("Setting log level failed");
    for i in 0.. {
        if let Some(device_name) = Device::get_name(i) {
            println!("Device {} = '{}'", i, device_name);
            if let Err(error) = run_mnist(&device_name) {
                println!("{:?}", error);
            }
        } else {
            println!("Finished; # devices = {}", i);
            break;
        }
    }
}

fn read_graph() -> Result<Vec<u8>, io::Error> {
    let mut data = vec![];
    File::open("./examples/mnist.graph")?
        .read_to_end(&mut data)
        .map(|_| data)
}

fn random_input(rng: &mut ThreadRng) -> Vec<f16> {
    (0..768).map(|_| f16::from_f32(rng.gen())).collect()
}

fn run_mnist(device_name: &str) -> Result<(), Error> {
    let mut rng = rand::thread_rng();
    let device = Device::open(device_name)?;

    let data = read_graph()?;
    let mut graph = Graph::allocate(&device, &data)?;

    graph.set_blocking(&Blocking::Block)?;
    println!("Blocking -> {:?}", graph.get_blocking()?);
    for _ in 0..10 {
        exec_block(&mut graph, &mut rng)?;
    }

    graph.set_blocking(&Blocking::DontBlock)?;
    println!("Blocking -> {:?}", graph.get_blocking()?);
    for _ in 0..10 {
        exec_dont_block(&mut graph, &mut rng)?;
    }

    println!(
        "Thermal throttling level = {:?}",
        device.get_thermal_throttling_level()?
    );

    Ok(())
}

fn exec_block(graph: &mut Graph, rng: &mut ThreadRng) -> Result<(), Error> {
    graph.load_tensor(&random_input(rng))?;
    let (id, digit) = graph
        .get_result::<f16>()
        .map(|(id, output)| (id, most_probable_digit(output)))?;
    let time_taken: f32 = graph.get_time_taken()?.iter().cloned().sum();
    print_result(id, digit, time_taken);
    Ok(())
}

fn exec_dont_block(graph: &mut Graph, rng: &mut ThreadRng) -> Result<(), Error> {
    loop {
        match graph.load_tensor(&random_input(rng)) {
            Ok(_) => (),
            Err(mvnc::Error::Busy) => break, // All buffers filled
            Err(e) => return Err(e.into()),
        }
    }

    loop {
        let result = graph
            .get_result::<f16>()
            .map(|(id, output)| (id, most_probable_digit(output)));
        match result {
            Ok((id, digit)) => {
                let time_taken: f32 = graph.get_time_taken()?.iter().cloned().sum();
                print_result(id, digit, time_taken);
            }
            Err(mvnc::Error::Idle) => return Ok(()), // No calculations pending
            Err(mvnc::Error::NoData) => (),          // Calculation not ready
            Err(e) => return Err(e.into()),
        }
    }
}

fn most_probable_digit(output: &[f16]) -> usize {
    let mut max = consts::MIN;
    let mut digit = 0;
    for (i, &prob) in output.iter().enumerate() {
        if prob > max {
            max = prob;
            digit = i;
        }
    }
    digit
}

fn print_result(id: usize, digit: usize, time_taken: f32) {
    println!(
        "Run {:2} in {:.2}ms, most probable digit = {}",
        id, time_taken, digit
    );
}

#[derive(Debug)]
enum Error {
    MvncError(mvnc::Error),
    IoError(io::Error),
}

impl From<mvnc::Error> for Error {
    fn from(error: mvnc::Error) -> Error {
        Error::MvncError(error)
    }
}

impl From<io::Error> for Error {
    fn from(error: io::Error) -> Error {
        Error::IoError(error)
    }
}

No runtime deps