4 releases (2 breaking)
0.3.1 | Oct 30, 2024 |
---|---|
0.3.0 | Oct 15, 2024 |
0.2.1 | Oct 15, 2024 |
0.1.1 | Oct 15, 2024 |
#125 in Hardware support
5,734 downloads per month
Used in hyperlight-host
2MB
54K
SLoC
mshv
Microsoft Hypervisor wrappers. This repository provides two crates which are mshv-bindings and mshv-ioctls. These crates will provide the APIs and definitions to create a VMM on Microsoft Hypervisor along with other rust-vmm crates.
Supported Platforms
The mshv-{ioctls, bindings} can be used on x86_64 only.
Build
cargo build
Running the tests
Test (/dev/mshv requires root):
sudo -E ~/.cargo/bin/cargo test
lib.rs
:
A safe wrapper around the kernel's MSHV interface.
This crate offers safe wrappers for:
- system ioctls using the
Mshv
structure - VM ioctls using the
VmFd
structure - vCPU ioctls using the
VcpuFd
structure - device ioctls using the
DeviceFd
structure
Platform support
- x86_64
NOTE: The list of available ioctls is not extensive.
Example - Running a VM on x86_64
In this example we are creating a Virtual Machine (VM) with one vCPU. On the vCPU we are running machine specific code. This example is based on the LWN article on using the MSHV API.
To get code running on the vCPU we are going through the following steps:
- Instantiate MSHV. This is used for running system specific ioctls.
- Use the MSHV object to create a VM. The VM is used for running VM specific ioctls.
- Initialize the guest memory for the created VM. In this dummy example we are adding only one memory region and write the code in one memory page.
- Create a vCPU using the VM object. The vCPU is used for running vCPU specific ioctls.
- Setup architectural specific general purpose registers and special registers. For details about how and why these registers are set, please check the LWN article on which this example is built.
- Run the vCPU code in a loop and check the exit reasons.
use crate::ioctls::system::Mshv;
use std::io::Write;
use libc::c_void;
fn run_vm() {
let mshv = Mshv::new().unwrap();
let vm = mshv.create_vm().unwrap();
let vcpu = vm.create_vcpu(0).unwrap();
// This example is based on https://lwn.net/Articles/658511/
#[rustfmt::skip]
let code:[u8;11] = [
0xba, 0xf8, 0x03, /* mov $0x3f8, %dx */
0x00, 0xd8, /* add %bl, %al */
0x04, b'0', /* add $'0', %al */
0xee, /* out %al, (%dx) */
/* send a 0 to indicate we're done */
0xb0, b'\0', /* mov $'\0', %al */
0xee, /* out %al, (%dx) */
];
let mem_size = 0x4000;
// SAFETY: FFI call.
let load_addr = unsafe {
libc::mmap(
std::ptr::null_mut(),
mem_size,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_ANONYMOUS | libc::MAP_SHARED | libc::MAP_NORESERVE,
-1,
0,
)
} as *mut u8;
let mem_region = mshv_user_mem_region {
flags: set_bits!(u8, MSHV_SET_MEM_BIT_WRITABLE, MSHV_SET_MEM_BIT_EXECUTABLE),
guest_pfn: 0x1,
size: 0x1000,
userspace_addr: load_addr as u64,
..Default::default()
};
vm.map_user_memory(mem_region).unwrap();
// SAFETY: load_addr is a valid pointer from mmap. Its length is mem_size.
unsafe {
// Get a mutable slice of `mem_size` from `load_addr`.
let mut slice = slice::from_raw_parts_mut(load_addr, mem_size);
slice.write_all(&code).unwrap();
}
//Get CS Register
let mut cs_reg = hv_register_assoc {
name: hv_register_name::HV_X64_REGISTER_CS as u32,
..Default::default()
};
vcpu.get_reg(slice::from_mut(&mut cs_reg)).unwrap();
// SAFETY: access union fields
unsafe {
assert_ne!({ cs_reg.value.segment.base }, 0);
assert_ne!({ cs_reg.value.segment.selector }, 0);
};
cs_reg.value.segment.base = 0;
cs_reg.value.segment.selector = 0;
vcpu.set_reg(&[
cs_reg,
hv_register_assoc {
name: hv_register_name::HV_X64_REGISTER_RAX as u32,
value: hv_register_value { reg64: 2 },
..Default::default()
},
hv_register_assoc {
name: hv_register_name::HV_X64_REGISTER_RBX as u32,
value: hv_register_value { reg64: 2 },
..Default::default()
},
hv_register_assoc {
name: hv_register_name::HV_X64_REGISTER_RIP as u32,
value: hv_register_value { reg64: 0x1000 },
..Default::default()
},
hv_register_assoc {
name: hv_register_name::HV_X64_REGISTER_RFLAGS as u32,
value: hv_register_value { reg64: 0x2 },
..Default::default()
},
])
.unwrap();
let hv_message: hv_message = Default::default();
let mut done = false;
loop {
let ret_hv_message: hv_message = vcpu.run(hv_message).unwrap();
match ret_hv_message.header.message_type {
hv_message_type_HVMSG_X64_HALT => {
println!("VM Halted!");
break;
}
hv_message_type_HVMSG_X64_IO_PORT_INTERCEPT => {
let io_message = ret_hv_message.to_ioport_info().unwrap();
if !done {
assert!(io_message.rax == b'4' as u64);
assert!(io_message.port_number == 0x3f8);
// SAFETY: access union fields.
unsafe {
assert!(io_message.access_info.__bindgen_anon_1.string_op() == 0);
assert!(io_message.access_info.__bindgen_anon_1.access_size() == 1);
}
assert!(
io_message.header.intercept_access_type == /*HV_INTERCEPT_ACCESS_WRITE*/ 1_u8
);
done = true;
/* Advance rip */
vcpu.set_reg(&[hv_register_assoc {
name: hv_register_name::HV_X64_REGISTER_RIP as u32,
value: hv_register_value {
reg64: io_message.header.rip + 1,
},
..Default::default()
}])
.unwrap();
} else {
assert!(io_message.rax == b'\0' as u64);
assert!(io_message.port_number == 0x3f8);
// SAFETY: access union fields.
unsafe {
assert!(io_message.access_info.__bindgen_anon_1.string_op() == 0);
assert!(io_message.access_info.__bindgen_anon_1.access_size() == 1);
}
assert!(
io_message.header.intercept_access_type == /*HV_INTERCEPT_ACCESS_WRITE*/ 1_u8
);
break;
}
}
_ => {
println!("Message type: 0x{:x?}", {
ret_hv_message.header.message_type
});
panic!("Unexpected Exit Type");
}
};
}
assert!(done);
vm.unmap_user_memory(mem_region).unwrap();
// SAFETY: FFI call. We're sure load_addr and mem_size are correct.
unsafe { libc::munmap(load_addr as *mut c_void, mem_size) };
}
Dependencies
~1.4–2MB
~32K SLoC