#nlp #string #pattern #pattern-match #fuzzy-matching #string-search #fuzzy-string

matcher_rs

A high-performance matcher designed to solve LOGICAL and TEXT VARIATIONS problems in word matching, implemented in Rust

38 releases (4 breaking)

0.5.6 Nov 18, 2024
0.5.5 Oct 14, 2024
0.5.4 Aug 23, 2024
0.5.3 Jul 26, 2024
0.1.9 Jun 12, 2024

#276 in Text processing

Download history 169/week @ 2024-09-14 76/week @ 2024-09-21 33/week @ 2024-09-28 204/week @ 2024-10-12 18/week @ 2024-10-19 2/week @ 2024-10-26 9/week @ 2024-11-02 1/week @ 2024-11-09 138/week @ 2024-11-16 21/week @ 2024-11-23 2/week @ 2024-11-30 58/week @ 2024-12-07

58 downloads per month
Used in 2 crates

Apache-2.0 OR MIT

290KB
2.5K SLoC

Matcher

A high-performance matcher designed to solve LOGICAL and TEXT VARIATIONS problems in word matching, implemented in Rust.

For detailed implementation, see the Design Document.

Features

  • Multiple Matching Methods:
    • Simple Word Matching
    • Regex-Based Matching
    • Similarity-Based Matching
  • Text Transformation:
    • Fanjian: Simplify traditional Chinese characters to simplified ones. Example: 蟲艸 -> 虫艹
    • Delete: Remove specific characters. Example: *Fu&*iii&^%%*&kkkk -> Fuiiikkkk
    • Normalize: Normalize special characters to identifiable characters. Example: 𝜢𝕰𝕃𝙻𝝧 𝙒ⓞᵣℒ𝒟! -> hello world!
    • PinYin: Convert Chinese characters to Pinyin for fuzzy matching. Example: 西安 -> xi an, matches 洗按 -> xi an, but not -> xian
    • PinYinChar: Convert Chinese characters to Pinyin. Example: 西安 -> xian, matches 洗按 and -> xian
  • AND OR NOT Word Matching:
    • Takes into account the number of repetitions of words.
    • Example: hello&world matches hello world and world,hello
    • Example: &&& matches 无无法天 (because is repeated twice), but not 无法天
    • Example: hello~helloo~hhello matches hello but not helloo and hhello
  • Customizable Exemption Lists: Exclude specific words from matching.
  • Efficient Handling of Large Word Lists: Optimized for performance.

Usage

Adding to Your Project

To use matcher_rs in your Rust project, run the following command:

cargo add matcher_rs

Explanation of the configuration

  • Matcher's configuration is defined by the MatchTableMap = HashMap<u32, Vec<MatchTable>> type, the key of MatchTableMap is called match_id, for each match_id, the table_id inside is required to be unique.
  • SimpleMatcher's configuration is defined by the SimpleTable = HashMap<ProcessType, HashMap<u32, &str>> type, the value HashMap<u32, &str>'s key is called word_id, word_id is required to be globally unique.

MatchTable

  • table_id: The unique ID of the match table.
  • match_table_type: The type of the match table.
  • word_list: The word list of the match table.
  • exemption_process_type: The type of the exemption simple match.
  • exemption_word_list: The exemption word list of the match table.

For each match table, word matching is performed over the word_list, and exemption word matching is performed over the exemption_word_list. If the exemption word matching result is True, the word matching result will be False.

MatchTableType

  • Simple: Supports simple multiple patterns matching with text normalization defined by process_type.
    • It can handle combination patterns and repeated times sensitive matching, delimited by & and ~, such as hello&world&hello will match hellohelloworld and worldhellohello, but not helloworld due to the repeated times of hello.
  • Regex: Supports regex patterns matching.
    • SimilarChar: Supports similar character matching using regex.
      • ["hello,hallo,hollo,hi", "word,world,wrd,🌍", "!,?,~"] will match helloworld!, hollowrd?, hi🌍~ ··· any combinations of the words split by , in the list.
    • Acrostic: Supports acrostic matching using regex (currently only supports Chinese and simple English sentences).
      • ["h,e,l,l,o", "你,好"] will match hope, endures, love, lasts, onward. and 你的笑容温暖, 好心情常伴。.
    • Regex: Supports regex matching.
      • ["h[aeiou]llo", "w[aeiou]rd"] will match hello, world, hillo, wurld ··· any text that matches the regex in the list.
  • Similar: Supports similar text matching based on distance and threshold.
    • Levenshtein: Supports similar text matching based on Levenshtein distance.

ProcessType

  • None: No transformation.
  • Fanjian: Traditional Chinese to simplified Chinese transformation. Based on FANJIAN.
    • 妳好 -> 你好
    • 現⾝ -> 现身
  • Delete: Delete all punctuation, special characters and white spaces. Based on TEXT_DELETE and WHITE_SPACE.
    • hello, world! -> helloworld
    • 《你∷好》 -> 你好
  • Normalize: Normalize all English character variations and number variations to basic characters. Based on NORM and NUM_NORM.
    • ℋЀ⒈㈠Õ -> he11o
    • ⒈Ƨ㊂ -> 123
  • PinYin: Convert all unicode Chinese characters to pinyin with boundaries. Based on PINYIN.
    • 你好 -> ni hao
    • 西安 -> xi an
  • PinYinChar: Convert all unicode Chinese characters to pinyin without boundaries. Based on PINYIN.
    • 你好 -> nihao
    • 西安 -> xian

You can combine these transformations as needed. Pre-defined combinations like DeleteNormalize and FanjianDeleteNormalize are provided for convenience.

Avoid combining PinYin and PinYinChar due to that PinYin is a more limited version of PinYinChar, in some cases like xian, can be treat as two words xi and an, or only one word xian.

Basic Example

Here’s a basic example of how to use the Matcher struct for text matching:

use matcher_rs::{text_process, reduce_text_process, ProcessType};

let result = text_process(ProcessType::Delete, "你好,世界!");
let result = reduce_text_process(ProcessType::FanjianDeleteNormalize, "你好,世界!");
use std::collections::HashMap;
use matcher_rs::{Matcher, MatchTableMap, MatchTable, MatchTableType, ProcessType};

let match_table_map: MatchTableMap = HashMap::from_iter(vec![
    (1, vec![MatchTable {
        table_id: 1,
        match_table_type: MatchTableType::Simple { process_type: ProcessType::FanjianDeleteNormalize},
        word_list: vec!["example", "test"],
        exemption_process_type: ProcessType::None,
        exemption_word_list: vec![],
    }]),
]);
let matcher = Matcher::new(&match_table_map);
let text = "This is an example text.";
let results = matcher.word_match(text);
use std::collections::HashMap;
use matcher_rs::{ProcessType, SimpleMatcher};

let mut simple_table = HashMap::new();
let mut simple_word_map = HashMap::new();

simple_word_map.insert(1, "你好");
simple_word_map.insert(2, "世界");

simple_table.insert(ProcessType::Fanjian, simple_word_map);

let matcher = SimpleMatcher::new(&simple_table);
let text = "你好,世界!";
let results = matcher.process(text);

For more detailed usage examples, please refer to the test.rs file.

Feature Flags

  • runtime_build: By enable runtime_build feature, we could build process matcher at runtime, but with build time increasing.
  • serde: By enable serde feature, we could serialize and deserialize matcher and simple_matcher. With serde feature, AhoCorasick's prefilter is disabled, because I don't know how to serialize it correctly, which will lead to performance regression when the patterns size is small (say, less than 100).
  • dfa: By enable dfa feature, we could use dfa to perform simple matching, but with significantly increasing memory consumption.

Default feature is dfa. If you want to make Matcher and SimpleMatcher serializable, you should enable serde feature.

Benchmarks

Bench against pairs (CN_WORD_LIST_100000, CN_HAYSTACK) and (EN_WORD_LIST_100000, EN_HAYSTACK). Word selection is totally random.

The matcher_rs library includes benchmarks to measure the performance of the matcher. You can find the benchmarks in the bench.rs file. To run the benchmarks, use the following command:

cargo bench
Current default simple match type: ProcessType(None)
Current default simple word map size: 1000
Current default combined times: 2
Timer precision: 41 ns
bench                                     fastest       │ slowest       │ median        │ mean          │ samples │ iters
├─ build_cn                                             │               │               │               │         │
│  ├─ build_cn_by_combined_times                        │               │               │               │         │
│  │  ├─ 1                                2.421 ms      │ 3.108 ms      │ 2.433 ms      │ 2.468 ms      │ 100100
│  │  ├─ 2                                4.98 ms       │ 5.647 ms      │ 5.047 ms      │ 5.073 ms      │ 100100
│  │  ├─ 3                                7.651 ms      │ 10.03 ms      │ 7.802 ms      │ 7.947 ms      │ 100100
│  │  ├─ 4                                10.23 ms      │ 12.06 ms      │ 10.5 ms       │ 10.61 ms      │ 100100
│  │  ╰─ 5                                12.93 ms      │ 14.1 ms       │ 13.15 ms      │ 13.24 ms      │ 100100
│  ├─ build_cn_by_multiple_process_type   25.3 ms       │ 59.86 ms      │ 26 ms         │ 26.53 ms      │ 100100
│  ├─ build_cn_by_process_type                          │               │               │               │         │
│  │  ├─ "delete"                         5.053 ms      │ 5.439 ms      │ 5.176 ms      │ 5.191 ms      │ 100100
│  │  ├─ "delete_normalize"               4.962 ms      │ 5.768 ms      │ 5.069 ms      │ 5.1 ms        │ 100100
│  │  ├─ "fanjian"                        5.109 ms      │ 8.929 ms      │ 5.19 ms       │ 5.366 ms      │ 100100
│  │  ├─ "fanjian_delete_normalize"       4.987 ms      │ 8.449 ms      │ 5.26 ms       │ 5.424 ms      │ 100100
│  │  ├─ "none"                           5.03 ms       │ 14.95 ms      │ 5.159 ms      │ 5.353 ms      │ 100100
│  │  ├─ "normalize"                      5.039 ms      │ 5.872 ms      │ 5.214 ms      │ 5.247 ms      │ 100100
│  │  ├─ "pinyin"                         6.722 ms      │ 14.46 ms      │ 7.347 ms      │ 7.344 ms      │ 100100
│  │  ╰─ "pinyinchar"                     6.603 ms      │ 9.37 ms       │ 7.147 ms      │ 7.197 ms      │ 100100
│  ╰─ build_cn_by_simple_word_map_size                  │               │               │               │         │
│     ├─ 100                              471.7 µs      │ 681.7 µs      │ 501.9 µs      │ 512.3 µs      │ 100100
│     ├─ 1000                             5.186 ms      │ 5.858 ms      │ 5.292 ms      │ 5.321 ms      │ 100100
│     ├─ 10000                            47.09 ms      │ 51.62 ms      │ 47.4 ms       │ 47.77 ms      │ 100100
│     ╰─ 50000                            180.3 ms      │ 194.4 ms      │ 185.7 ms      │ 186.1 ms      │ 2727
├─ build_en                                             │               │               │               │         │
│  ├─ build_en_by_combined_times                        │               │               │               │         │
│  │  ├─ 1                                5.629 ms      │ 6.387 ms      │ 5.733 ms      │ 5.759 ms      │ 100100
│  │  ├─ 2                                13.33 ms      │ 17.14 ms      │ 13.51 ms      │ 13.55 ms      │ 100100
│  │  ├─ 3                                19.83 ms      │ 23.14 ms      │ 20.85 ms      │ 20.85 ms      │ 100100
│  │  ├─ 4                                27.55 ms      │ 30.19 ms      │ 27.73 ms      │ 27.8 ms       │ 100100
│  │  ╰─ 5                                35.21 ms      │ 37.18 ms      │ 35.55 ms      │ 35.6 ms       │ 100100
│  ├─ build_en_by_multiple_process_type   15.21 ms      │ 16.72 ms      │ 15.8 ms       │ 15.79 ms      │ 100100
│  ├─ build_en_by_process_type                          │               │               │               │         │
│  │  ├─ "delete"                         12.63 ms      │ 26.19 ms      │ 13.2 ms       │ 13.32 ms      │ 100100
│  │  ├─ "delete_normalize"               11.76 ms      │ 12.68 ms      │ 11.94 ms      │ 11.95 ms      │ 100100
│  │  ├─ "none"                           12.21 ms      │ 13.52 ms      │ 12.67 ms      │ 12.71 ms      │ 100100
│  │  ╰─ "normalize"                      11.45 ms      │ 12.09 ms      │ 11.59 ms      │ 11.61 ms      │ 100100
│  ╰─ build_en_by_simple_word_map_size                  │               │               │               │         │
│     ├─ 100                              820 µs        │ 1.184 ms      │ 830.6 µs      │ 851.1 µs      │ 100100
│     ├─ 1000                             13 ms         │ 14.52 ms      │ 13.65 ms      │ 13.62 ms      │ 100100
│     ├─ 10000                            151.4 ms      │ 169.1 ms      │ 157.5 ms      │ 157.6 ms      │ 3232
│     ╰─ 50000                            640.3 ms      │ 677.1 ms      │ 655 ms        │ 655.3 ms      │ 88
├─ search_cn                                            │               │               │               │         │
│  ├─ search_cn_baseline                                │               │               │               │         │
│  │  ├─ 100                              2.904 ms      │ 7.824 ms      │ 2.927 ms      │ 2.986 ms      │ 100100
│  │  ├─ 1000                             3.046 ms      │ 3.81 ms       │ 3.066 ms      │ 3.095 ms      │ 100100
│  │  ├─ 10000                            7.651 ms      │ 8.541 ms      │ 7.77 ms       │ 7.854 ms      │ 100100
│  │  ╰─ 50000                            26.67 ms      │ 47.51 ms      │ 28.74 ms      │ 30.15 ms      │ 100100
│  ├─ search_cn_by_combined_times                       │               │               │               │         │
│  │  ├─ 1                                3.967 ms      │ 4.308 ms      │ 4.031 ms      │ 4.039 ms      │ 100100
│  │  ├─ 2                                5.201 ms      │ 5.742 ms      │ 5.246 ms      │ 5.264 ms      │ 100100
│  │  ├─ 3                                6.405 ms      │ 7.174 ms      │ 6.442 ms      │ 6.47 ms       │ 100100
│  │  ├─ 4                                7.012 ms      │ 7.671 ms      │ 7.039 ms      │ 7.067 ms      │ 100100
│  │  ╰─ 5                                8.471 ms      │ 9.027 ms      │ 8.606 ms      │ 8.621 ms      │ 100100
│  ├─ search_cn_by_multiple_process_type  61.42 ms      │ 92.44 ms      │ 64.06 ms      │ 65.2 ms       │ 100100
│  ├─ search_cn_by_process_type                         │               │               │               │         │
│  │  ├─ "delete"                         14.44 ms      │ 15.15 ms      │ 14.59 ms      │ 14.59 ms      │ 100100
│  │  ├─ "delete_normalize"               20.58 ms      │ 21.86 ms      │ 21.19 ms      │ 21.08 ms      │ 100100
│  │  ├─ "fanjian"                        6.902 ms      │ 7.653 ms      │ 7.232 ms      │ 7.179 ms      │ 100100
│  │  ├─ "fanjian_delete_normalize"       21.72 ms      │ 23.12 ms      │ 21.98 ms      │ 22.11 ms      │ 100100
│  │  ├─ "none"                           5.013 ms      │ 5.628 ms      │ 5.053 ms      │ 5.073 ms      │ 100100
│  │  ├─ "normalize"                      15.25 ms      │ 16.69 ms      │ 15.44 ms      │ 15.62 ms      │ 100100
│  │  ├─ "pinyin"                         41.1 ms       │ 45.53 ms      │ 43.78 ms      │ 43.21 ms      │ 100100
│  │  ╰─ "pinyinchar"                     42.93 ms      │ 48.92 ms      │ 45.06 ms      │ 44.83 ms      │ 100100
│  ╰─ search_cn_by_simple_word_map_size                 │               │               │               │         │
│     ├─ 100                              3.205 ms      │ 3.498 ms      │ 3.242 ms      │ 3.268 ms      │ 100100
│     ├─ 1000                             5.057 ms      │ 5.674 ms      │ 5.273 ms      │ 5.277 ms      │ 100100
│     ├─ 10000                            16.31 ms      │ 19.4 ms       │ 17.24 ms      │ 17.12 ms      │ 100100
│     ╰─ 50000                            53.87 ms      │ 93.62 ms      │ 58.71 ms      │ 62.27 ms      │ 8181
├─ search_en                                            │               │               │               │         │
│  ├─ search_en_baseline                                │               │               │               │         │
│  │  ├─ 100                              353.9 µs      │ 471.7 µs      │ 376.6 µs      │ 381.7 µs      │ 100100
│  │  ├─ 1000                             369 µs        │ 452.2 µs      │ 389.1 µs      │ 393.8 µs      │ 100100
│  │  ├─ 10000                            1.027 ms      │ 1.06 ms       │ 1.034 ms      │ 1.035 ms      │ 100100
│  │  ╰─ 50000                            1.004 ms      │ 1.055 ms      │ 1.016 ms      │ 1.018 ms      │ 100100
│  ├─ search_en_by_combined_times                       │               │               │               │         │
│  │  ├─ 1                                1.788 ms      │ 4.898 ms      │ 1.915 ms      │ 1.94 ms       │ 100100
│  │  ├─ 2                                2.477 ms      │ 2.747 ms      │ 2.489 ms      │ 2.494 ms      │ 100100
│  │  ├─ 3                                2.792 ms      │ 3.142 ms      │ 2.805 ms      │ 2.813 ms      │ 100100
│  │  ├─ 4                                2.691 ms      │ 3.115 ms      │ 2.711 ms      │ 2.717 ms      │ 100100
│  │  ╰─ 5                                2.786 ms      │ 3.342 ms      │ 2.803 ms      │ 2.824 ms      │ 100100
│  ├─ search_en_by_multiple_process_type  10.12 ms      │ 11.85 ms      │ 10.76 ms      │ 10.56 ms      │ 100100
│  ├─ search_en_by_process_type                         │               │               │               │         │
│  │  ├─ "delete"                         7.104 ms      │ 13.92 ms      │ 7.145 ms      │ 7.235 ms      │ 100100
│  │  ├─ "delete_normalize"               8.588 ms      │ 9.469 ms      │ 8.71 ms       │ 8.848 ms      │ 100100
│  │  ├─ "none"                           2.436 ms      │ 2.711 ms      │ 2.456 ms      │ 2.466 ms      │ 100100
│  │  ╰─ "normalize"                      4.047 ms      │ 4.338 ms      │ 4.07 ms       │ 4.076 ms      │ 100100
│  ╰─ search_en_by_simple_word_map_size                 │               │               │               │         │
│     ├─ 100                              1.355 ms      │ 3.969 ms      │ 1.429 ms      │ 1.483 ms      │ 100100
│     ├─ 1000                             2.064 ms      │ 2.279 ms      │ 2.077 ms      │ 2.084 ms      │ 100100
│     ├─ 10000                            3.381 ms      │ 4.793 ms      │ 3.396 ms      │ 3.415 ms      │ 100100
│     ╰─ 50000                            4.561 ms      │ 6.879 ms      │ 4.659 ms      │ 4.824 ms      │ 100100
╰─ single_line                                          │               │               │               │         │
   ├─ search_cn_single_line                             │               │               │               │         │
   │  ├─ 100                              252.2 ns      │ 426.8 ns      │ 262.7 ns      │ 271.7 ns      │ 1001600
   │  ├─ 1000                             309.6 ns      │ 338.2 ns      │ 317.4 ns      │ 317.5 ns      │ 1001600
   │  ├─ 10000                            540.7 ns      │ 10.04 µs      │ 624.7 ns      │ 725.5 ns      │ 100100
   │  ╰─ 50000                            1.29 µs       │ 43.45 µs      │ 1.374 µs      │ 1.848 µs      │ 100100
   ╰─ search_en_single_line                             │               │               │               │         │
      ├─ 100                              56.04 ns      │ 58.64 ns      │ 57.01 ns      │ 56.92 ns      │ 10012800
      ├─ 1000                             56.69 ns      │ 68.4 ns       │ 57.99 ns      │ 58.17 ns      │ 10012800
      ├─ 10000                            374.7 ns      │ 5.291 µs      │ 457.7 ns      │ 512.6 ns      │ 100100
      ╰─ 50000                            457.7 ns      │ 16.99 µs      │ 540.7 ns      │ 701.9 ns      │ 100100

Contributing

Contributions to matcher_rs are welcome! If you find a bug or have a feature request, please open an issue on the GitHub repository. If you would like to contribute code, please fork the repository and submit a pull request.

License

matcher_rs is licensed under the MIT OR Apache-2.0 license.

More Information

For more details, visit the GitHub repository.

Dependencies

~7–14MB
~169K SLoC