7 releases
0.15.0 | Sep 28, 2024 |
---|---|
0.13.4 | Jan 24, 2024 |
0.0.4 | Oct 31, 2023 |
0.0.3 | Apr 17, 2023 |
0.0.0 | Mar 23, 2023 |
#7 in #serves
186 downloads per month
Used in 6 crates
(2 directly)
1MB
25K
SLoC
Kaspa On Rust
Welcome to the Rust-based implementation of the Kaspa full-node and its ancillary libraries. The contained node release serves as a drop-in replacement to the established Golang node and to date is the recommended node software for the Kaspa network, introducing developers to the possibilities of Rust in the Kaspa network's context.
We invite developers and blockchain enthusiasts to collaborate, test, and optimize our Rust implementation. Each line of code here is an opportunity to contribute to the open-source blockchain movement, shaping a platform designed for scalability and speed without compromising on security and decentralization.
Your feedback, contributions, and issue reports will be integral to evolving this codebase and continuing its maturity as a reliable node in the Kaspa network.
The default branch of this repository is master
and new contributions are constantly merged into it. For a stable branch corresponding to the latest stable release please pull and compile the stable
branch.
Installation
Building on Linux
-
Install general prerequisites
sudo apt install curl git build-essential libssl-dev pkg-config
-
Install Protobuf (required for gRPC)
sudo apt install protobuf-compiler libprotobuf-dev #Required for gRPC
-
Install the clang toolchain (required for RocksDB and WASM secp256k1 builds)
sudo apt-get install clang-format clang-tidy \ clang-tools clang clangd libc++-dev \ libc++1 libc++abi-dev libc++abi1 \ libclang-dev libclang1 liblldb-dev \ libllvm-ocaml-dev libomp-dev libomp5 \ lld lldb llvm-dev llvm-runtime \ llvm python3-clang
-
Install the rust toolchain
If you already have rust installed, update it by running:
rustup update
-
Install wasm-pack
cargo install wasm-pack
-
Install wasm32 target
rustup target add wasm32-unknown-unknown
-
Clone the repo
git clone https://github.com/kaspanet/rusty-kaspa cd rusty-kaspa
Building on Windows
-
Install Git for Windows or an alternative Git distribution.
-
Install Protocol Buffers and add the
bin
directory to yourPath
-
Install LLVM-15.0.6-win64.exe
Add the
bin
directory of the LLVM installation (C:\Program Files\LLVM\bin
) to PATHset
LIBCLANG_PATH
environment variable to point to thebin
directory as wellIMPORTANT: Due to C++ dependency configuration issues, LLVM
AR
installation on Windows may not function correctly when switching between WASM and native C++ code compilation (nativeRocksDB+secp256k1
vs WASM32 builds ofsecp256k1
). Unfortunately, manually settingAR
environment variable also confuses C++ build toolchain (it should not be set for native but should be set for WASM32 targets). Currently, the best way to address this, is as follows: after installing LLVM on Windows, go to the targetbin
installation directory and copy or renameLLVM_AR.exe
toAR.exe
. -
Install the rust toolchain
If you already have rust installed, update it by running:
rustup update
-
Install wasm-pack
cargo install wasm-pack
-
Install wasm32 target
rustup target add wasm32-unknown-unknown
-
Clone the repo
git clone https://github.com/kaspanet/rusty-kaspa cd rusty-kaspa
Building on Mac OS
-
Install Protobuf (required for gRPC)
brew install protobuf
-
Install llvm.
The default XCode installation of
llvm
does not support WASM build targets. To build WASM on MacOS you need to installllvm
from homebrew (at the time of writing, the llvm version for MacOS is 16.0.1).brew install llvm
NOTE: Homebrew can use different keg installation locations depending on your configuration. For example:
/opt/homebrew/opt/llvm
->/opt/homebrew/Cellar/llvm/16.0.1
/usr/local/Cellar/llvm/16.0.1
To determine the installation location you can use
brew list llvm
command and then modify the paths below accordingly:% brew list llvm /usr/local/Cellar/llvm/16.0.1/bin/FileCheck /usr/local/Cellar/llvm/16.0.1/bin/UnicodeNameMappingGenerator ...
If you have
/opt/homebrew/Cellar
, then you should be able to use/opt/homebrew/opt/llvm
.Add the following to your
~/.zshrc
file:export PATH="/opt/homebrew/opt/llvm/bin:$PATH" export LDFLAGS="-L/opt/homebrew/opt/llvm/lib" export CPPFLAGS="-I/opt/homebrew/opt/llvm/include" export AR=/opt/homebrew/opt/llvm/bin/llvm-ar
Reload the
~/.zshrc
filesource ~/.zshrc
-
Install the rust toolchain
If you already have rust installed, update it by running:
rustup update
-
Install wasm-pack
cargo install wasm-pack
-
Install wasm32 target
rustup target add wasm32-unknown-unknown
-
Clone the repo
git clone https://github.com/kaspanet/rusty-kaspa cd rusty-kaspa
Building WASM32 SDK
Rust WebAssembly (WASM) refers to the use of the Rust programming language to write code that can be compiled into WebAssembly, a binary instruction format that runs in web browsers and NodeJs. This allows for easy development using JavaScript and TypeScript programming languages while retaining the benefits of Rust.
WASM SDK components can be built from sources by running:
- ./build-release
- build a full release package (includes both release and debug builds for web and nodejs targets)
- ./build-docs
- build TypeScript documentation
- ./build-web
- release web build
- ./build-web-dev
- development web build
- ./build-nodejs
- release nodejs build
- ./build-nodejs-dev
- development nodejs build
IMPORTANT: do not use dev
builds in production. They are significantly larger, slower and include debug symbols.
Requirements
- NodeJs (v20+): https://nodejs.org/en
- TypeDoc: https://typedoc.org/
Builds & documentation
- Release builds: https://github.com/kaspanet/rusty-kaspa/releases
- Developer builds: https://kaspa.aspectron.org/nightly/downloads/
- Developer TypeScript documentation: https://kaspa.aspectron.org/docs/
Kaspa CLI + Wallet
kaspa-cli
crate provides a cli-driven RPC interface to the node and a
terminal interface to the Rusty Kaspa Wallet runtime. These wallets are
compatible with WASM SDK Wallet API and Kaspa NG projects.
cd cli
cargo run --release
Local Web Wallet
Run an http server inside of wallet/wasm/web
folder. If you don't have once, you can use the following:
cd wallet/wasm/web
cargo install basic-http-server
basic-http-server
The basic-http-server will serve on port 4000 by default, so open your web browser and load http://localhost:4000
The framework is compatible with all major desktop and mobile browsers.
Running the node
Start a mainnet node
cargo run --release --bin kaspad
# or with UTXO-index enabled (needed when using wallets)
cargo run --release --bin kaspad -- --utxoindex
Start a testnet node
cargo run --release --bin kaspad -- --testnet
Testnet 11
For participation in the 10BPS test network (TN11), see the following detailed guide.
Using a configuration file
cargo run --release --bin kaspad -- --configfile /path/to/configfile.toml
# or
cargo run --release --bin kaspad -- -C /path/to/configfile.toml
- The config file should be a list of <CLI argument> = <value> separated by newlines.
- Whitespace around the
=
is fine,arg=value
andarg = value
are both parsed correctly. - Values with special characters like
.
or=
will require quoting the value i.e <CLI argument> = "<value>". - Arguments with multiple values should be surrounded with brackets like
addpeer = ["10.0.0.1", "1.2.3.4"]
.
For example:
testnet = true
utxoindex = false
disable-upnp = true
perf-metrics = true
appdir = "some-dir"
netsuffix = 11
addpeer = ["10.0.0.1", "1.2.3.4"]
Pass the --help
flag to view all possible arguments
cargo run --release --bin kaspad -- --help
wRPC
wRPC subsystem is disabled by default in kaspad
and can be enabled via:
JSON protocol:
--rpclisten-json = <interface:port>
# or use the defaults for current network
--rpclisten-json = default
Borsh protocol:
--rpclisten-borsh = <interface:port>
# or use the defaults for current network
--rpclisten-borsh = default
Sidenote:
Rusty Kaspa integrates an optional wRPC subsystem. wRPC is a high-performance, platform-neutral, Rust-centric, WebSocket-framed RPC implementation that can use Borsh and JSON protocol encoding.
JSON protocol messaging is similar to JSON-RPC 1.0, but differs from the specification due to server-side notifications.
Borsh encoding is meant for inter-process communication. When using Borsh both client and server should be built from the same codebase.
JSON protocol is based on Kaspa data structures and is data-structure-version agnostic. You can connect to the JSON endpoint using any WebSocket library. Built-in RPC clients for JavaScript and TypeScript capable of running in web browsers and Node.js are available as a part of the Kaspa WASM framework.
Benchmarking & Testing
Simulation framework (Simpa)
The current codebase supports a full in-process network simulation, building an actual DAG over virtual time with virtual delay and benchmarking validation time (following the simulation generation).
To see the available commands
cargo run --release --bin simpa -- --help
The following command will run a simulation to produce 1000 blocks with communication delay of 2 seconds and 8 BPS (blocks per second) while attempting to fill each block with up to 200 transactions.
cargo run --release --bin simpa -- -t=200 -d=2 -b=8 -n=1000
Heap Profiling
Heap-profiling in kaspad
and simpa
can be done by enabling heap
feature and profile using the --features
argument
cargo run --bin kaspad --profile heap --features=heap
It will produce {bin-name}-heap.json
file in the root of the workdir, that can be inspected by the dhat-viewer
Tests
Run unit and most integration tests
cd rusty-kaspa
cargo test --release
// or install nextest and run
Using nextest
cd rusty-kaspa
cargo nextest run --release
Lints
cd rusty-kaspa
./check
Benchmarks
cd rusty-kaspa
cargo bench
Logging
Logging in kaspad
and simpa
can be filtered by either:
-
Defining the environment variable
RUST_LOG
-
Adding the --loglevel argument like in the following example:
(cargo run --bin kaspad -- --loglevel info,kaspa_rpc_core=trace,kaspa_grpc_core=trace,consensus=trace,kaspa_core=trace) 2>&1 | tee ~/rusty-kaspa.log
In this command we set the
loglevel
toINFO
.
lib.rs
:
WASM bindings for the Rusty Kaspa p2p Node wRPC Client
Dependencies
~48–70MB
~1M SLoC