3 releases
0.1.2 | Nov 16, 2024 |
---|---|
0.1.1 | Nov 15, 2024 |
0.1.0 | Nov 15, 2024 |
#688 in Algorithms
9KB
127 lines
Kabsch-Umeyama
The Kabsch-Umeyama algorithm is a method for aligning and comparing the similarity between two sets of points. It finds the optimal translation, rotation and scaling by minimizing the root-mean-square deviation (RMSD) of the point pairs.
Features
- Efficient and accurate implementation of the Kabsch-Umeyama algorithm.
- Calculates translation, and (optional) scaling matrices (RxC dimensions).
- Suitable for various applications involving point cloud alignment.
Dependency
If you have Ubuntu, follow the command below:
sudo apt install gfortran cmake
If you encounter an error, please check the requirements at nalgebra-lapack
Examples
use kabsch_umeyama::{Array2, estimate};
fn main() {
// create an array src with 2 rows and 3 columns from a nested array
let src = Array2::from([[1., 2., 3.], [4., 5., 6.]]);
// create a dst array with 2 rows and 3 columns from a reference array
let dst = Array2::<2, 3>::from(&[2., 3., 4., 5., 6., 7.]);
// estimate the translation matrix
let t = estimate(src, dst, true);
println!("The homogeneous similarity transformation matrix is: {}", t);
}
References
Dependencies
~63MB
~838K SLoC