8 releases
0.3.3 | Apr 28, 2024 |
---|---|
0.3.2 | Feb 7, 2023 |
0.3.1 | Dec 10, 2022 |
0.3.0 | Aug 27, 2022 |
0.1.0 | Apr 20, 2021 |
#558 in Encoding
Used in cir
295KB
7K
SLoC
IRP
This is a rust libary for encoding and decoding Infrared protocols using IRP Notation or Pronto Hex. Remote controls for TVs, Hifi sets, air conditioning units, etc. send messages encoded using many different protocols. Using this library you can decode the IR received from a remote control, or encode IR into the same format as a remote control.
When the bpf
feature is enabled, a decoder can be compiled to BPF. This decoder is
usable on Linux for BPF based kernel decoding.
This library only deals with the encoding and decoding, and does not know anything about talking to infrared devices for receiving or transmitting; you can use the cir crate for that on Linux. You will also need an IRP definition or Pronto hex definition of your remote protocol. There is a long list of IRP definitions maintained by IrpTransmogrifier and on hifi-remote.
There are also some utility functions for parsing raw ir and mode2 output.
See the docs to see the complete interface, or use the examples below.
What does raw IR mean?
This library encodes to raw IR. raw IR is alternating on-off durations of infrared light, expressed in microseconds. For example,
+500 -100 +500
This means 500 microseconds of infrared light on, 100 microseconds off, and then 500 microseconds on again. This is also known as flash and gap, and lirc uses the terms pulse and space.
It is common for raw IR to end with a gap. This ensures the gap period is correct between one message and the next.
What is IRP?
This is a simple example of IRP:
{40k,600}<1,-1|2,-1>(4,-1,F:8,^45m)[F:0..255]
IRP is a notation for infrared protocols, which this library uses for both encoding and decoding infrared. This usually involve some parameters like:
F
for function, like play or volume up.D
for device; a hifi set can include multiple units, so do you want the tape deck to play or the cd player?S
for SubdeviceT
for toggle. Has a button been pressed down or was it released and pressed again, i.e. toggled. The value ofT
does not matter, just whether it changes from one packet to the next.- Other protocol specific values like heating or cooling for air conditioning units.
Decoding means recovering the parameters from raw IR, and encoding means creating the raw IR from some parameters values.
We also have a much more in-depth introduction to IRP Notation.
What is pronto hex?
This is a notation used by the Philips Pronto universal remote, which is a series of hex numbers, for example:
0000 0070 0003 0002 0006 0002 0004 0002 0004 0006 0006 0003 0003 000С
There is one pronto hex code per button; it is not parameterized like IRP.
Repeats
When a button is held down on a remote, then the IR message is repeated until the button is released. Even if a button is pressed briefly, the IR message may be repeated a few times.
Some IR receivers require repeats before IR is decoded. For example, the Sony LBT-V702 requires at least one repeat, else the IR will be ignored.
Encoding IRP
This example encodes an button press using NEC encoding, encodes and then simply prints the encoded result.
use irp::{Irp, Vartable};
fn main() {
// nec protocol
let irp = Irp::parse(r#"
{38.4k,564}<1,-1|1,-3>(16,-8,D:8,S:8,F:8,~F:8,1,^108m,(16,-4,1,^108m)*)
[D:0..255,S:0..255=255-D,F:0..255]"#)
.expect("parse should succeed");
// Set some values for D, S, and F
let mut vars = Vartable::new();
vars.set(String::from("D"), 255);
vars.set(String::from("S"), 52);
vars.set(String::from("F"), 1);
// encode message with 0 repeats
let message = irp.encode_raw(vars, 0).expect("encode should succeed");
if let Some(carrier) = &message.carrier {
println!("carrier: {}Hz", carrier);
}
if let Some(duty_cycle) = &message.duty_cycle {
println!("duty cycle: {}%", duty_cycle);
}
println!("{}", message.print_rawir());
}
The output is in raw ir format, which looks like so:
carrier: 38400Hz
+9024 -4512 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -564 +564 -564 +564 -1692 +564 -564 +564 -1692 +564 -1692 +564 -564 +564 -564 +564 -1692 +564 -564 +564 -564 +564 -564 +564 -564 +564 -564 +564 -564 +564 -564 +564 -564 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -1692 +564 -36372
Each entry is a duration in microseconds, and prefixed with +
for flash
(infrared light on) and -
for gap for infrared light off. This is also known
as pulse and space.
Encoding Pronto Hex
The Pronto Hex is made popular by the Philips Pronto universal remote. The format is a series of 4 digits hex numbers.
use irp::Pronto;
fn main() {
let pronto = Pronto::parse(r#"
0000 006C 0000 0022 00AD 00AD 0016 0041 0016 0041 0016 0041 0016 0016 0016
0016 0016 0016 0016 0016 0016 0016 0016 0041 0016 0041 0016 0041 0016 0016
0016 0016 0016 0016 0016 0016 0016 0016 0016 0016 0016 0041 0016 0016 0016
0016 0016 0016 0016 0016 0016 0016 0016 0016 0016 0041 0016 0016 0016 0041
0016 0041 0016 0041 0016 0041 0016 0041 0016 0041 0016 06FB
"#).expect("parse should succeed");
// encode using 1 repeats
let message = pronto.encode(1);
if let Some(carrier) = &message.carrier {
println!("carrier: {}Hz", carrier);
}
println!("{}", message.print_rawir());
}
Output:
+4507 -4507 +573 -1693 +573 -1693 +573 -1693 +573 -573 +573 -573 +573 -573 +573 -573 +573 -573 +573 -1693 +573 -1693 +573 -1693 +573 -573 +573 -573 +573 -573 +573 -573 +573 -573 +573 -573 +573 -1693 +573 -573 +573 -573 +573 -573 +573 -573 +573 -573 +573 -573 +573 -1693 +573 -573 +573 -1693 +573 -1693 +573 -1693 +573 -1693 +573 -1693 +573 -1693 +573 -46559
Encoding IRP to Pronto Hex
The IRP can also be encoded to pronto hex codes. Pronto hex codes have a repeating part, so no repeat argument is needed.
use irp::{Irp, Vartable};
fn main() {
// sony8 protocol
let irp = Irp::parse("{40k,600}<1,-1|2,-1>(4,-1,F:8,^45m)[F:0..255]")
.expect("parse should succeed");
let mut vars = Vartable::new();
vars.set(String::from("F"), 1);
let pronto = irp.encode_pronto(vars).expect("encode should succeed");
println!("{}", pronto);
}
The output:
0000 0068 0009 0000 0060 0018 0030 0018 0018 0018 0018 0018 0018 0018 0018 0018 0018 0018 0018 0018 0018 0510
Decoding using IRP
This example decodes some IR using rc5 protocol. First the IRP notation is parsed, and then we compile the DFA state machine, for decoding. Then we create a decoder, which needs some matching parameters, and then we can feed it input.
use irp::{Irp, InfraredData, Options, Decoder};
fn main() {
let irp = Irp::parse(r#"
{36k,msb,889}<1,-1|-1,1>((1,~F:1:6,T:1,D:5,F:6,^114m)*,T=1-T)
[D:0..31,F:0..127,T@:0..1=0]"#)
.expect("parse should succeed");
let options = Options {
aeps: 100,
eps: 30,
max_gap: 20000,
..Default::default()
};
let dfa = irp.compile(&options).expect("build dfa should succeed");
// Create a decoder with 100 microsecond tolerance, 30% relative tolerance,
// and 20000 microseconds maximum gap.
let mut decoder = Decoder::new(options);
for ir in InfraredData::from_rawir(
"+940 -860 +1790 -1750 +880 -880 +900 -890 +870 -900 +1750
-900 +890 -910 +840 -920 +870 -920 +840 -920 +870 -1810 +840 -125000").unwrap() {
decoder.dfa_input(ir, &dfa, |event, vars| {
println!("decoded: {} F={} D={} T={}", event, vars["F"], vars["D"], vars["T"]);
});
}
}
This should print:
decoded: down F=1 D=30 T=0
Parsing raw ir format
The raw ir format looks like +100 -100 +100
. The leading +
and -
may be omitted, but if present they are
checked for consistency. The parse function returns a Message
.
use irp::Message;
fn main() {
let rawir = Message::parse("+100 -100 +100").expect("parse should succeed");
println!("{}", rawir.print_rawir());
}
Parsing lirc mode2 pulse space files
This format was made popular by the mode2 tool, which prints a single line
for each flash and gap, but then calls them pulse
and space
. It looks like so:
carrier 38400
pulse 9024
space 4512
pulse 4512
This is an example of how to parse this. The result is printed in the more concise raw ir format.
use irp::Message;
fn main() {
let message = Message::parse_mode2(r#"
carrier 38400
pulse 9024
space 4512
pulse 4512
"#).expect("parse should succeed");
if let Some(carrier) = &message.carrier {
println!("carrier: {}Hz", carrier);
}
if let Some(duty_cycle) = &message.duty_cycle {
println!("duty cycle: {}%", duty_cycle);
}
println!("{}", message.print_rawir());
}
Sending IR using cir crate
This example opens the first lirc device /dev/lirc0
and transmits the 1
button from a Hauppauge remote.
# extern crate cir;
use cir::lirc;
use irp::{Irp, Vartable};
const RC5_IRP: &str =
"{36k,msb,889}<1,-1|-1,1>((1,~F:1:6,T:1,D:5,F:6,^114m)*,T=1-T)[D:0..31,F:0..127,T@:0..1=0]";
fn main() {
let mut dev = lirc::open("/dev/lirc0").unwrap();
let mut vars = Vartable::new();
vars.set("F".into(), 30);
vars.set("D".into(), 0);
let irp = Irp::parse(RC5_IRP).unwrap();
let message = irp.encode_raw(vars, 1).unwrap();
if let Some(carrier) = &message.carrier {
// set the carrier frequency (see the 36k in the IRP definition)
dev.set_send_carrier(*carrier as u32).unwrap();
}
// send the message
dev.send(&message.raw).unwrap();
println!("done");
}
Dependencies
~2.6–3.5MB
~81K SLoC