#gpu #dimensionality #umap #machine-learning #manifold #2d-3d #cpu-gpu

fast-umap

Configurable UMAP (Uniform Manifold Approximation and Projection) in Rust

2 releases

new 0.0.2 Dec 16, 2024
0.0.1 Dec 15, 2024

#70 in Machine learning

Download history 175/week @ 2024-12-11

175 downloads per month

MIT license

96KB
724 lines

fast-umap

UMAP (Uniform Manifold Approximation and Projection) in Rust

This repository contains a Rust implementation of UMAP (Uniform Manifold Approximation and Projection), a dimensionality reduction algorithm that preserves both the local and global structure of data. UMAP is widely used for visualizing high-dimensional data in 2D or 3D space.

This implementation leverages the burn machine learning framework, which provides automatic differentiation and GPU support, allowing you to train and apply UMAP models on high-dimensional datasets efficiently.

Features

  • Dimensionality Reduction: Reduces high-dimensional data to a lower-dimensional space (e.g., 2D or 3D) for visualization or further analysis.
  • Customizable UMAP Model: The model architecture can be configured with different numbers of input features, hidden layer sizes, and output dimensions.
  • GPU Support: Powered by the burn framework with support for training on CPU and GPU using the wgpu backend.
  • Flexible Data Handling: Functions for converting between vectors and tensors, generating synthetic data, and more.

Roadmap

  • Add MNIST dataset example
  • Create testbench to compare different hyper parameters (patience vs n_features vs epochs etc.)

Installation

cargo add fast-umap

Example Usage

1. Fitting a UMAP Model

You can fit a UMAP model to your data using the UMAP::fit function. Here's how to do it:

use burn::backend::Autodiff;
use burn::backend::wgpu::{Wgpu, WgpuDevice};
use fast_umap::prelude::*;

fn main() {
    // Example data (list of samples, each with a list of features)
    let data: Vec<Vec<f64>> = vec![
        vec![1.0, 2.0, 3.0],
        vec![4.0, 5.0, 6.0],
        vec![7.0, 8.0, 9.0],
        // Add more samples...
    ];

    // Fit the UMAP model
    let model = umap(data);

    // You can now use the model to transform new data
    let transformed = model.transform(data);

    // Print the transformed data (low-dimensional representation)
    for sample in transformed {
        println!("{:?}", sample);
    }
}

2. Transforming Data

Once the UMAP model is trained, you can transform new high-dimensional data into its low-dimensional representation:

let transformed_data = model.transform(new_data);

This function will take new_data in the form of Vec<Vec<f64>> and return its 2D or 3D representation, suitable for visualization.

3. Generating Test Data

You can generate synthetic test data to experiment with the UMAP model using the generate_test_data function:

let data = generate_test_data(100, 50); // 100 samples, each with 50 features

4. Visualizing Data

After transforming the data to a 2D or 3D space, you can use external charting libraries (e.g., plotters in Rust or matplotlib in Python) to visualize the results.

Model Configuration

The UMAP model configuration is customizable through the UMAPModelConfigBuilder. You can set the following parameters:

  • input_size: Number of input features (i.e., the dimensionality of the data).
  • hidden_size: The number of neurons in the hidden layers.
  • output_size: The target number of dimensions (typically 2 or 3 for visualization).

Here's how to configure and build the model:

let model_config = UMAPModelConfigBuilder::default()
    .input_size(50)      // Input features: 50 dimensions
    .hidden_size(100)    // Hidden layer size: 100 neurons
    .output_size(2)      // Output size: 2 (for 2D visualization)
    .build()
    .unwrap();

Training the UMAP Model

You can train the UMAP model on your dataset by calling the fit method on the UMAP struct. The training process will optimize the model's weights to reduce the data's dimensionality.

Training configuration parameters include:

  • epochs: The number of epochs to train the model.
  • batch_size: The number of samples per training batch.
  • learning_rate: The learning rate for gradient descent.
  • beta1, beta2: Optimizer hyperparameters for Adam optimization.

For example:

let model = UMAP::<Autodiff<Wgpu>>::fit(data, WgpuDevice::default());

Examples

Simple

cargo run --example simple

Sample code:

use fast_umap::prelude::*;
use rand::Rng;

fn main() {
    // Number of samples in the dataset
    let num_samples = 100;

    // Number of features (dimensions) for each sample
    let num_features = 3;

    // Create a random number generator for generating random values
    let mut rng = rand::thread_rng();

    // Generate a dataset of random values with `num_samples` rows and `num_features` columns
    let data: Vec<Vec<f64>> = (0..num_samples * num_features)
        .map(|_| rng.gen::<f64>()) // Random number generation for each feature
        .collect::<Vec<f64>>() // Collect all random values into a vector
        .chunks_exact(num_features) // Chunk the vector into rows of length `num_features`
        .map(|chunk| chunk.to_vec()) // Convert each chunk into a Vec<f64>
        .collect(); // Collect the rows into a vector of vectors

    // Fit the UMAP model to the data and reduce the data to a lower-dimensional space (default: 2D)
    let umap = umap(data.clone());

    // Transform the data using the trained UMAP model to reduce its dimensions
    let reduced_dimensions_vector = umap.transform(data.clone());

    // Visualize the reduced dimensions as a vector
    chart_vector(reduced_dimensions_vector, None);

    // Optionally, you can also visualize the reduced dimensions as a tensor
    // let reduced_dimensions_tensor = umap.transform_to_tensor(data.clone());
    // print_tensor_with_title("reduced_dimensions", &reduced_dimensions_tensor);
    // chart_tensor(reduced_dimensions_tensor, None);
}

Generates this plot:

plot

Advanced

cargo run --example advanced

Sample code:

use burn::{backend::*, module::*, prelude::*};
use fast_umap::{chart, model::*, prelude::*, train::train, utils::*};

fn main() {
    // Define a custom backend type using Wgpu with 32-bit floating point precision and 32-bit integer type
    type MyBackend = Wgpu<f32, i32>;

    // Define the AutodiffBackend based on the custom MyBackend type
    type MyAutodiffBackend = Autodiff<MyBackend>;

    // Initialize the GPU device for computation
    let device = burn::backend::wgpu::WgpuDevice::default();

    // Set training hyperparameters
    let batch_size = 1; // Number of samples per batch during training
    let num_samples = 1000; // Total number of samples in the dataset
    let num_features = 100; // Number of features (dimensions) for each sample
    let k_neighbors = 10; // Number of nearest neighbors for the UMAP algorithm
    let output_size = 2; // Number of output dimensions (e.g., 2D for embeddings)
    let hidden_sizes = vec![100, 100, 100]; // Size of the hidden layer in the neural network
    let learning_rate = 0.001; // Learning rate for optimization
    let beta1 = 0.9; // Beta1 parameter for the Adam optimizer
    let beta2 = 0.999; // Beta2 parameter for the Adam optimizer
    let epochs = 400; // Number of training epochs
    let seed = 9999; // Random seed to ensure reproducibility
    let verbose = true; // Whether to enable the progress bar during training
    let patience = 10; // Number of epochs without improvement before early stopping
    let min_desired_loss = 0.001; // Minimum loss threshold for early stopping
    let timeout = 60;

    // let metric = Metric::EuclideanKNN; // Alternative metric for neighbors search
    let metric = "euclidean_knn"; // Distance metric used for the nearest neighbor search

    // Seed the random number generator to ensure reproducibility
    MyBackend::seed(seed);

    // Generate random test data for training
    let train_data = generate_test_data(num_samples, num_features);

    // Configure the UMAP model with the specified input size, hidden layer size, and output size
    let model_config = UMAPModelConfigBuilder::default()
        .input_size(num_features)
        .hidden_sizes(hidden_sizes)
        .output_size(output_size)
        .build()
        .unwrap();

    // Initialize the UMAP model with the defined configuration and the selected device
    let model: UMAPModel<MyAutodiffBackend> = UMAPModel::new(&model_config, &device);

    // Set up the training configuration with the specified hyperparameters
    let config = TrainingConfig::<MyAutodiffBackend>::builder()
        .with_epochs(epochs) // Set the number of epochs for training
        .with_batch_size(batch_size) // Set the batch size for training
        .with_learning_rate(learning_rate) // Set the learning rate for the optimizer
        .with_device(device) // Specify the device (GPU) for computation
        .with_beta1(beta1) // Set the beta1 parameter for the Adam optimizer
        .with_beta2(beta2) // Set the beta2 parameter for the Adam optimizer
        .with_verbose(verbose) // Enable or disable the progress bar
        .with_patience(patience) // Set the patience for early stopping
        .with_metric(metric.into()) // Set the metric for nearest neighbors (e.g., Euclidean)
        .with_k_neighbors(k_neighbors) // Set the number of neighbors to consider for UMAP
        .with_min_desired_loss(min_desired_loss) // Set the minimum desired loss for early stopping
        .with_timeout(timeout) // set timeout in seconds
        .build()
        .expect("Failed to build TrainingConfig");

    // Start training the UMAP model with the specified training data and configuration
    let model = train::<MyAutodiffBackend>(
        model,              // The model to train
        num_samples,        // Total number of training samples
        num_features,       // Number of features per sample
        train_data.clone(), // The training data
        &config,            // The training configuration
    );

    // Validate the trained model after training
    let (model, _) = model.valid();

    // Convert the training data into a tensor for model input
    let global = convert_vector_to_tensor(train_data, num_samples, num_features, &config.device);

    // Perform a forward pass through the model to obtain the low-dimensional (local) representation
    let local = model.forward(global.clone());

    // Optionally, print the global and local tensors for inspection (currently commented out)
    // if verbose {
    //     print_tensor_with_title("global", &global);
    //     print_tensor_with_title("local", &local);
    // }

    // Visualize the 2D embedding (local representation) using a chart
    chart::chart_tensor(local, None);
}

It also generates 2d plot, and a loss chart:

loss

License

This project is licensed under the MIT License - see the LICENSE file for details.

2024, Eugene Hauptmann

Thank you

Inspired by original UMAP paper

Dependencies

~73–110MB
~2M SLoC