#kdtree

fast-kd

K-dimensional tree in Rust for fast geospatial indexing and nearest neighbors lookup

1 unstable release

0.1.1 Mar 23, 2022
0.1.0 Mar 23, 2022

#745 in Science

MIT/Apache

19KB
431 lines

kiddo

K-dimensional tree library (bucket point-region implementation). A fork of kdtree. Refactored to use const generics, with some performance improvements and extra features. Thanks and kudos to mrhooray for the original kdtree library on which kiddo is based.

Ideal for neareast-neighbour stype queries on astronomical and geospatial datasets.

Installation

Add kiddo to Cargo.toml

[dependencies]
kiddo = "0.2.1"

Usage

use kiddo::KdTree;
use kiddo::ErrorKind;
use kiddo::distance::squared_euclidean;

let a: ([f64; 2], usize) = ([0f64, 0f64], 0);
let b: ([f64; 2], usize) = ([1f64, 1f64], 1);
let c: ([f64; 2], usize) = ([2f64, 2f64], 2);
let d: ([f64; 2], usize) = ([3f64, 3f64], 3);

let mut kdtree = KdTree::new();

kdtree.add(&a.0, a.1)?;
kdtree.add(&b.0, b.1)?;
kdtree.add(&c.0, c.1)?;
kdtree.add(&d.0, d.1)?;

assert_eq!(kdtree.size(), 4);
assert_eq!(
    kdtree.nearest(&a.0, 0, &squared_euclidean)?,
    vec![]
);
assert_eq!(
    kdtree.nearest(&a.0, 1, &squared_euclidean)?,
    vec![(0f64, &0)]
);
assert_eq!(
    kdtree.nearest(&a.0, 2, &squared_euclidean)?,
    vec![(0f64, &0), (2f64, &1)]
);
assert_eq!(
    kdtree.nearest(&a.0, 3, &squared_euclidean)?,
    vec![(0f64, &0), (2f64, &1), (8f64, &2)]
);
assert_eq!(
    kdtree.nearest(&a.0, 4, &squared_euclidean)?,
    vec![(0f64, &0), (2f64, &1), (8f64, &2), (18f64, &3)]
);
assert_eq!(
    kdtree.nearest(&a.0, 5, &squared_euclidean)?,
    vec![(0f64, &0), (2f64, &1), (8f64, &2), (18f64, &3)]
);
assert_eq!(
    kdtree.nearest(&b.0, 4, &squared_euclidean)?,
    vec![(0f64, &1), (2f64, &0), (2f64, &2), (8f64, &3)]
);

Dependencies

~185–410KB