23 releases (4 breaking)
0.7.0 | Oct 30, 2024 |
---|---|
0.6.6 | Oct 28, 2024 |
0.6.0 | Sep 18, 2024 |
0.5.4 | Sep 12, 2024 |
0.3.2 | Apr 16, 2024 |
#17 in #zig
1,095 downloads per month
Used in 4 crates
(via error_set)
49KB
1K
SLoC
Error Set
Error Set simplifies error management by providing a streamlined method for defining errors and easily converting between them. Resultingly, error handling becomes both straightforward and efficient.
Error Set is inspired by Zig's error set, and offers similar functionality.
Instead of defining various enums/structs for errors and hand rolling relations, use an error set:
use error_set::error_set;
error_set! {
MediaError = BookParsingError || DownloadError || ParseUploadError;
BookParsingError = {
MissingBookDescription,
IoError(std::io::Error),
} || BookSectionParsingError;
BookSectionParsingError = {
MissingName,
NoContents,
};
DownloadError = {
InvalidUrl,
IoError(std::io::Error),
};
ParseUploadError = {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
}
Cargo Expand
use error_set::error_set;
pub enum MediaError {
MissingBookDescription,
IoError(std::io::Error),
MissingName,
NoContents,
InvalidUrl,
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
}
#[automatically_derived]
impl ::core::fmt::Debug for MediaError {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
MediaError::MissingBookDescription => {
::core::fmt::Formatter::write_str(f, "MissingBookDescription")
}
MediaError::IoError(__self_0) => {
::core::fmt::Formatter::debug_tuple_field1_finish(
f,
"IoError",
&__self_0,
)
}
MediaError::MissingName => {
::core::fmt::Formatter::write_str(f, "MissingName")
}
MediaError::NoContents => ::core::fmt::Formatter::write_str(f, "NoContents"),
MediaError::InvalidUrl => ::core::fmt::Formatter::write_str(f, "InvalidUrl"),
MediaError::MaximumUploadSizeReached => {
::core::fmt::Formatter::write_str(f, "MaximumUploadSizeReached")
}
MediaError::TimedOut => ::core::fmt::Formatter::write_str(f, "TimedOut"),
MediaError::AuthenticationFailed => {
::core::fmt::Formatter::write_str(f, "AuthenticationFailed")
}
}
}
}
#[allow(unused_qualifications)]
impl core::error::Error for MediaError {
fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
match *self {
MediaError::IoError(ref source) => source.source(),
#[allow(unreachable_patterns)]
_ => None,
}
}
}
impl core::fmt::Display for MediaError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match *self {
MediaError::MissingBookDescription => {
f.write_fmt(format_args!("{0}", "MediaError::MissingBookDescription"))
}
MediaError::IoError(ref source) => f.write_fmt(format_args!("{0}", source)),
MediaError::MissingName => {
f.write_fmt(format_args!("{0}", "MediaError::MissingName"))
}
MediaError::NoContents => {
f.write_fmt(format_args!("{0}", "MediaError::NoContents"))
}
MediaError::InvalidUrl => {
f.write_fmt(format_args!("{0}", "MediaError::InvalidUrl"))
}
MediaError::MaximumUploadSizeReached => {
f.write_fmt(format_args!("{0}", "MediaError::MaximumUploadSizeReached"))
}
MediaError::TimedOut => {
f.write_fmt(format_args!("{0}", "MediaError::TimedOut"))
}
MediaError::AuthenticationFailed => {
f.write_fmt(format_args!("{0}", "MediaError::AuthenticationFailed"))
}
}
}
}
impl From<BookParsingError> for MediaError {
fn from(error: BookParsingError) -> Self {
match error {
BookParsingError::MissingBookDescription => {
MediaError::MissingBookDescription
}
BookParsingError::IoError(source) => MediaError::IoError(source),
BookParsingError::MissingName => MediaError::MissingName,
BookParsingError::NoContents => MediaError::NoContents,
}
}
}
impl From<BookSectionParsingError> for MediaError {
fn from(error: BookSectionParsingError) -> Self {
match error {
BookSectionParsingError::MissingName => MediaError::MissingName,
BookSectionParsingError::NoContents => MediaError::NoContents,
}
}
}
impl From<DownloadError> for MediaError {
fn from(error: DownloadError) -> Self {
match error {
DownloadError::InvalidUrl => MediaError::InvalidUrl,
DownloadError::IoError(source) => MediaError::IoError(source),
}
}
}
impl From<ParseUploadError> for MediaError {
fn from(error: ParseUploadError) -> Self {
match error {
ParseUploadError::MaximumUploadSizeReached => {
MediaError::MaximumUploadSizeReached
}
ParseUploadError::TimedOut => MediaError::TimedOut,
ParseUploadError::AuthenticationFailed => MediaError::AuthenticationFailed,
}
}
}
impl From<std::io::Error> for MediaError {
fn from(error: std::io::Error) -> Self {
MediaError::IoError(error)
}
}
pub enum BookParsingError {
MissingBookDescription,
IoError(std::io::Error),
MissingName,
NoContents,
}
#[automatically_derived]
impl ::core::fmt::Debug for BookParsingError {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
BookParsingError::MissingBookDescription => {
::core::fmt::Formatter::write_str(f, "MissingBookDescription")
}
BookParsingError::IoError(__self_0) => {
::core::fmt::Formatter::debug_tuple_field1_finish(
f,
"IoError",
&__self_0,
)
}
BookParsingError::MissingName => {
::core::fmt::Formatter::write_str(f, "MissingName")
}
BookParsingError::NoContents => {
::core::fmt::Formatter::write_str(f, "NoContents")
}
}
}
}
#[allow(unused_qualifications)]
impl core::error::Error for BookParsingError {
fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
match *self {
BookParsingError::IoError(ref source) => source.source(),
#[allow(unreachable_patterns)]
_ => None,
}
}
}
impl core::fmt::Display for BookParsingError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match *self {
BookParsingError::MissingBookDescription => {
f.write_fmt(
format_args!("{0}", "BookParsingError::MissingBookDescription"),
)
}
BookParsingError::IoError(ref source) => {
f.write_fmt(format_args!("{0}", source))
}
BookParsingError::MissingName => {
f.write_fmt(format_args!("{0}", "BookParsingError::MissingName"))
}
BookParsingError::NoContents => {
f.write_fmt(format_args!("{0}", "BookParsingError::NoContents"))
}
}
}
}
impl From<BookSectionParsingError> for BookParsingError {
fn from(error: BookSectionParsingError) -> Self {
match error {
BookSectionParsingError::MissingName => BookParsingError::MissingName,
BookSectionParsingError::NoContents => BookParsingError::NoContents,
}
}
}
impl From<std::io::Error> for BookParsingError {
fn from(error: std::io::Error) -> Self {
BookParsingError::IoError(error)
}
}
pub enum BookSectionParsingError {
MissingName,
NoContents,
}
#[automatically_derived]
impl ::core::fmt::Debug for BookSectionParsingError {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(
f,
match self {
BookSectionParsingError::MissingName => "MissingName",
BookSectionParsingError::NoContents => "NoContents",
},
)
}
}
#[allow(unused_qualifications)]
impl core::error::Error for BookSectionParsingError {}
impl core::fmt::Display for BookSectionParsingError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match *self {
BookSectionParsingError::MissingName => {
f.write_fmt(format_args!("{0}", "BookSectionParsingError::MissingName"))
}
BookSectionParsingError::NoContents => {
f.write_fmt(format_args!("{0}", "BookSectionParsingError::NoContents"))
}
}
}
}
pub enum DownloadError {
InvalidUrl,
IoError(std::io::Error),
}
#[automatically_derived]
impl ::core::fmt::Debug for DownloadError {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
DownloadError::InvalidUrl => {
::core::fmt::Formatter::write_str(f, "InvalidUrl")
}
DownloadError::IoError(__self_0) => {
::core::fmt::Formatter::debug_tuple_field1_finish(
f,
"IoError",
&__self_0,
)
}
}
}
}
#[allow(unused_qualifications)]
impl core::error::Error for DownloadError {
fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
match *self {
DownloadError::IoError(ref source) => source.source(),
#[allow(unreachable_patterns)]
_ => None,
}
}
}
impl core::fmt::Display for DownloadError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match *self {
DownloadError::InvalidUrl => {
f.write_fmt(format_args!("{0}", "DownloadError::InvalidUrl"))
}
DownloadError::IoError(ref source) => {
f.write_fmt(format_args!("{0}", source))
}
}
}
}
impl From<std::io::Error> for DownloadError {
fn from(error: std::io::Error) -> Self {
DownloadError::IoError(error)
}
}
pub enum ParseUploadError {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
}
#[automatically_derived]
impl ::core::fmt::Debug for ParseUploadError {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
::core::fmt::Formatter::write_str(
f,
match self {
ParseUploadError::MaximumUploadSizeReached => "MaximumUploadSizeReached",
ParseUploadError::TimedOut => "TimedOut",
ParseUploadError::AuthenticationFailed => "AuthenticationFailed",
},
)
}
}
#[allow(unused_qualifications)]
impl core::error::Error for ParseUploadError {}
impl core::fmt::Display for ParseUploadError {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match *self {
ParseUploadError::MaximumUploadSizeReached => {
f.write_fmt(
format_args!("{0}", "ParseUploadError::MaximumUploadSizeReached"),
)
}
ParseUploadError::TimedOut => {
f.write_fmt(format_args!("{0}", "ParseUploadError::TimedOut"))
}
ParseUploadError::AuthenticationFailed => {
f.write_fmt(
format_args!("{0}", "ParseUploadError::AuthenticationFailed"),
)
}
}
}
}
which is also equivalent to writing the full expansion:
error_set! {
MediaError = {
IoError(std::io::Error),
MissingBookDescription,
MissingName,
NoContents,
InvalidUrl,
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
BookParsingError = {
MissingBookDescription,
IoError(std::io::Error),
MissingName,
NoContents,
};
BookSectionParsingError = {
MissingName,
NoContents,
};
DownloadError = {
InvalidUrl,
IoError(std::io::Error),
};
ParseUploadError = {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
}
Any above subset can be converted into a superset with .into()
or ?
.
This makes correctly scoping and passing around errors a breeze.
Error enums and error variants can also accept doc comments and attributes like #[derive(...)]
.
Basic Example
use error_set::error_set;
error_set! {
MediaError = {
IoError(std::io::Error)
} || BookParsingError || DownloadError || ParseUploadError;
BookParsingError = {
MissingBookDescription,
CouldNotReadBook(std::io::Error),
} || BookSectionParsingError;
BookSectionParsingError = {
MissingName,
NoContents,
};
DownloadError = {
InvalidUrl,
CouldNotSaveBook(std::io::Error),
};
ParseUploadError = {
MaximumUploadSizeReached,
TimedOut,
AuthenticationFailed,
};
}
fn main() {
let book_section_parsing_error: BookSectionParsingError = BookSectionParsingError::MissingName;
let book_parsing_error: BookParsingError = book_section_parsing_error.into();
assert!(matches!(book_parsing_error, BookParsingError::MissingName));
let media_error: MediaError = book_parsing_error.into();
assert!(matches!(media_error, MediaError::MissingName));
let io_error = std::io::Error::new(std::io::ErrorKind::OutOfMemory, "oops out of memory");
let result_download_error: Result<(), DownloadError> = Err(io_error).coerce(); // `.coerce()` == `.map_err(Into::into)`
let result_media_error: Result<(), MediaError> = result_download_error.coerce(); // `.coerce()` == `.map_err(Into::into)`
assert!(matches!(result_media_error, Err(MediaError::IoError(_))));
}
The typical project approach is to have one errors.rs
file with a single error_set
. This keeps
all the errors in one place and allows your IDE to autocomplete crate::errors::
with of all errors.
But error_set!
can also be used for quick errors "unions", no longer requiring users to
hand write From<..>
or use .map_err(..)
for these simple cases.
e.g.
error_set! {
JwtVerifierCreationError = {
Reqwest(reqwest::Error),
Jwt(jsonwebtoken::errors::Error),
};
}
impl JwtVerifier {
pub async fn new(project_id: String) -> Result<Self, JwtVerifierCreationError> {
let public_keys = Self::fetch_public_keys().await?; // Err is `reqwest::Error`
let decoding_keys = public_keys
.into_iter()
.map(|(key, value)| {
DecodingKey::from_rsa_pem(value.as_bytes()).map(|decoding_key| (key, decoding_key))
})
.collect()?; // Err is `jsonwebtoken::errors::Error`
...
}
}
Error sets also supports inline structs for passing error related data and custom display messages.
Just add the #[display(...)]
attribute to the variant.
error_set! {
AuthError = {
#[display("User `{}` with role `{}` does not exist", name, role)]
UserDoesNotExist {
name: String,
role: u32,
},
#[display("The provided credentials are invalid")]
InvalidCredentials
};
LoginError = {
// Below is equivalent to `#[display("Io Error: {}", source)]` or `#[display("Io Error: {}")]`
#[display("Io Error: {0}")]
IoError(std::io::Error),
} || AuthError;
}
Note: If a custom display is not provided for a wrapped error type like
IoError(std::io::Error)
, it will delegate its display to the inner type (std::io::Error
). If it is desired to prevent this, provide a custom display message, like in the above example, or add#[display(opaque)]
.
Usage
fn main() {
let x: AuthError = AuthError::UserDoesNotExist {
name: "john".to_string(),
role: 30,
};
assert_eq!(x.to_string(), "User `john` with role `30` does not exist".to_string());
let y: LoginError = x.into();
assert_eq!(y.to_string(), "User `john` with role `30` does not exist".to_string());
let x = AuthError::InvalidCredentials;
assert_eq!(x.to_string(), "The provided credentials are invalid".to_string());
}
You can even redeclare the same inline struct in a different set, change the display message, and conversion between sets will still work.
Feature Flags
coerce_macro: Each error set will generates a coerce!
macro to help handle coercion between partially intersecting sets.
let val = coerce!{ setx,
Ok(val) => val,
Err(SetX::X) => {}, // handle disjointedness
{ Err(SetX) => return Err(SetY) } // terminal coercion
}?;
More Details
Given:
error_set! {
SetX = {
X
} || Common;
SetY = {
Y
} || Common;
Common = {
A,
B,
C,
D,
E,
F,
G,
H,
};
}
rather than writing:
fn setx_result_to_sety_result() -> Result<(), SetY> {
let _ok = match setx_result() {
Ok(ok) => ok,
Err(SetX::X) => {} // handle disjointedness
Err(SetX::A) => {
return Err(SetY::A);
}
Err(SetX::B) => {
return Err(SetY::B);
}
Err(SetX::C) => {
return Err(SetY::C);
}
Err(SetX::D) => {
return Err(SetY::D);
}
Err(SetX::E) => {
return Err(SetY::E);
}
Err(SetX::F) => {
return Err(SetY::F);
}
Err(SetX::G) => {
return Err(SetY::G);
}
Err(SetX::H) => {
return Err(SetY::H);
}
};
Ok(())
}
one can write this, which compiles to the match
statement above:
fn setx_result_to_sety_result() -> Result<(), SetY> {
let _ok = coerce!{ setx_result(),
Ok(ok) => ok,
Err(SetX::X) => {}, // handle disjointedness
{ Err(SetX) => return Err(SetY) } // terminal coercion
};
Ok(())
}
The coerce!
macro is a flat fast (no tt muncher 🦫) declarative macro created by the error_set!
macro for the set.
coerce!
behaves like a regular match
statement, except it allows a terminal coercion statement between sets. e.g.
{ Err(SetX) => return Err(SetY) }
{ Err(SetX) => Err(SetY) }
{ SetX => return SetY }
{ SetX => SetY }
With coerce!
, one can concisely handle specific variants of errors as they bubble up the call stack and propagate the rest.
tracing / log / defmt :
Enables support for the tracing
or log
or defmt
crates. Methods are added to Result
and are executed when the Result
is an Err
for logging purposes. They work similarly to anyhow
's .context(..)
method. e.g.
let result: Result<(), &str> = Err("operation failed");
let value: Result<(), &str> = result.error("If `Err`, this message is logged as error via tracing/log/defmt");
let value: Result<(), &str> = result.warn("If `Err`, this message is logged as warn via tracing/log/defmt");
let value: Result<(), &str> = result.with_debug(|err| format!("If `Err`, this message is logged as debug via tracing/log/defmt: {}", err));
let value: Option<()> = result.consume_info(); // If `Err`, the `Err` is logged as info via tracing/log/defmt
let value: Option<()> = result.consume_with_trace(|err| format!("If `Err`, this message is logged as trace via tracing/log/defmt: {}", err));
Note: a
context_stub
feature flag also exists to be used by libraries. This allows the api's to be used in libraries while a downstream binrary can ultimately decide the implementation. If no implementations is selected, since all the above methods are inlined, the code will be optimized away during compilation.
Why Choose error_set
Over thiserror
or anyhow
error_set
is a unique approach with some of the same features of thiserror
and anyhow
, while solving a few more problems
common to Rust developers.
Like thiserror
, error_set
allows you define errors, their display messages, and conversions between errors. However error_set
is more maintainable and approximately 50% more concise:
example
// thiserror
#[derive(Error)]
enum Error1 {
a,
b,
}
#[derive(Error)]
enum Error2 {
c,
d,
}
#[derive(Error)]
enum Error3 {
Error1(#[from] Error1),
Error2(#[from] Error2),
}
// error_set
error_set! {
Error1 = {
a,
b
};
Error2 = {
c,
d
};
Error3 = Error1 || Error2;
// `Error3` above is equivalent to writing
// ```
// Error3 = {
// a,
// b,
// c,
// d
// };
// ```
}
With error_set
there is no need to maintain a web of nested wrapped enums (with #[from]
), since there is no nesting, and all the From
implementations are automatically generated if one error type is a subset of another.
Like anyhow
, error_set
attempts to capture the context around errors. To accomplish this, it uses the help of tracing
/log
crate. See the
feature flags section for more info. However, if your project doesn't require handling specific error types and you just need to propagate errors up the call stack, then anyhow
is likely a good choice for you. It's straightforward and skips the need to define error types all together.
For libraries and general projects that require precise error handling and differentiation, error management can often become complex and unwieldy
as projects grow. This may even result in "mega enums". error_set
can help here where others can't.
What is a Mega Enum?
A mega enum, or mega error enum, is an enumeration that consolidates various error types into one large enum, whereas the code would be more precise if split into multiple enums. These often arise due to refactors or developers opting for less intrusive programming approach. This method can lead to inefficiencies and confusion because it includes error variants that are not relevant in certain scopes.
Example Scenario:
Consider the following functions and their respective error types:
func1
can produce errorsa
andb
, represented byenum1
.func2
can produce errorsc
andd
, represented byenum2
.func3
calls bothfunc1
andfunc2
.
If func3
does not handle the errors from func1
and func2
, it must return an error enum that encompasses variants a
, b
, c
, and d
. Without a tool like error_set
, developers might skip defining enum1
and enum2
due to the complexity and instead create a mega enum with all possible error variants (a
, b
, c
, d
). This means that any caller of func1
or func2
would have to handle all these cases, even those that are not possible in that specific context. error_set
being so concise and simple, developers actually want to scope their errors to the correct context and join them when needed with a simple ||
operation. No need to ever think about a web of nested wrapped error types.
How error_set
Simplifies Error Management:
error_set
allows you to define errors quickly and precisely. Correctly scoping errors is easy and no wrapping of
various error enum types is necessary. Conversions/Propagation up the stack are as simple as .into()
or ?
(or coerce!
macro).
error_set
also makes display messages and tracking context easy.
By using error_set
, your project can maintain clear and precise error definitions, enhancing code readability and maintainability without the tedious process of manually defining and managing error relations.
no_std
This crate supports #![no_std]
.
Cavets:
tracing
/log
features are not supported, butdefmt
is supported.
Dependencies
~285–730KB
~17K SLoC