9 releases
0.2.2-alpha | Apr 16, 2022 |
---|---|
0.2.1 | Dec 19, 2022 |
0.2.1-alpha | Apr 15, 2022 |
0.1.3-alpha | Apr 3, 2022 |
#731 in Rust patterns
55 downloads per month
Used in 3 crates
77KB
1.5K
SLoC
dilib-rs
A dependency injection library for Rust.
Usage
[dependencies]
dilib = "0.2.2-alpha"
Example
Basic Usage
use dilib::Container;
struct Printer;
impl Printer {
pub fn print(&self, s: &str) {
println!("{}", s);
}
}
struct EnglishGreeting;
impl EnglishGreeting {
pub fn greet(&self) -> String {
"Hello!".to_string()
}
}
struct SpanishGreeting;
impl SpanishGreeting {
pub fn greet(&self) -> String {
"Hola!".to_string()
}
}
let mut container = Container::new();
container.add_singleton(Printer).unwrap();
container.add_scoped(|| EnglishGreeting).unwrap();
container.add_scoped_with_name("es", || SpanishGreeting).unwrap();
let printer = container.get::<Printer>().unwrap();
let en = container.get::<EnglishGreeting>().unwrap();
let es = container.get_with_name::<SpanishGreeting>("es").unwrap();
printer.print(&en.greet());
printer.print(&es.greet());
Table of Contents
Container
The container is the main storage for the provides, it stores 2 types of providers:
Scoped
: provides a new instance every time it is requestedSingleton
: provides a single instance
All this provides can be named or unnamed, using the
methods that ends with with_name(...)
.
Scoped provider
The scoped providers provide a new instance every time they are requested.
use dilib::Container;
let mut container = Container::new();
container.add_scoped(|| String::from("Apple Pie")).unwrap();
let s = container.get::<String>().unwrap();
assert_eq!(s.as_ref(), "Apple Pie");
Singleton provider
The singleton providers provide a single instance.
use dilib::Container;
use std::sync::Mutex;
let mut container = Container::new();
container.add_singleton(Mutex::new(0)).unwrap();
{
let c1 = container.get::<Mutex<i32>>().unwrap();
*c1.lock().unwrap() = 3;
}
let c2 = container.get::<Mutex<i32>>().unwrap();
assert_eq!(*c2.lock().unwrap(), 3);
Inject trait
The Inject
trait provide a way to construct a type using the
providers of the container.
To add a type that implements Inject
to the container,
you use the add_deps
methods, this add the type as a Scoped
provider.
use std::sync::{Mutex, atomic::AtomicUsize};
use dilib::{Container, Inject};
struct IdGenerator(AtomicUsize);
impl IdGenerator {
pub fn next(&self) -> usize {
1 + self.0.fetch_add(1, std::sync::atomic::Ordering::SeqCst)
}
}
#[derive(Clone, Debug)]
struct Fruit {
id: usize,
tag: String
}
impl Inject for Fruit {
fn inject(container: &Container) -> Self {
let generator = container.get::<IdGenerator>().unwrap();
let id = generator.next();
let tag = container.get_with_name::<String>("fruit").unwrap().cloned();
Fruit { id, tag }
}
}
let mut container = Container::new();
container.add_singleton(IdGenerator(AtomicUsize::new(0))).unwrap();
container.add_scoped_with_name("fruit", || String::from("b18ap31")).unwrap();
container.add_deps::<Fruit>().unwrap();
let f1 = container.get::<Fruit>().unwrap();
let f2 = container.get::<Fruit>().unwrap();
assert_eq!(f1.id, 1);
assert_eq!(f1.tag, "b18ap31");
assert_eq!(f2.id, 2);
assert_eq!(f2.tag, "b18ap31");
Bind trait to implementation
Instead of adding a type directly to the container you can bind a trait to its implementation using the macros:
add_scoped_trait!(container, name, trait => impl)
add_singleton_trait!(container, name, trait => impl)
add_scoped_trait!(container, name, trait @ Inject)
add_singleton_trait!(container, name, trait @ Inject)
The name
is optional.
And you can get the values back using:
get_scoped_trait!(container, name, trait)
get_singleton_trait!(container, name, trait)
get_resolved_trait(container, name, trait)
The name
is also optional.
use dilib::{
Container,
add_scoped_trait,
add_singleton_trait,
get_resolved_trait,
};
trait Discount {
fn get_discount(&self) -> f32;
}
trait Fruit {
fn name(&self) -> &str;
fn price(&self) -> f32;
}
struct TenPercentDiscount;
impl Discount for TenPercentDiscount {
fn get_discount(&self) -> f32 {
0.1
}
}
struct Apple;
struct Orange;
impl Fruit for Apple {
fn name(&self) -> &str {
"Apple"
}
fn price(&self) -> f32 {
2.0
}
}
impl Fruit for Orange {
fn name(&self) -> &str {
"Orange"
}
fn price(&self) -> f32 {
1.7
}
}
let mut container = Container::new();
add_singleton_trait!(container, Discount => TenPercentDiscount).unwrap();
add_scoped_trait!(container, "apple", Fruit => Apple).unwrap();
add_scoped_trait!(container, "orange", Fruit => Orange).unwrap();
// All types are returned as `Box<dyn Trait>`
let discount = get_resolved_trait!(container, Discount).unwrap();
let apple = get_resolved_trait!(container, Fruit, "apple").unwrap();
let orange = get_resolved_trait!(container, Fruit, "orange").unwrap();
assert_eq!(discount.get_discount(), 0.1);
assert_eq!(apple.name(), "Apple");
assert_eq!(apple.price(), 2.0);
assert_eq!(orange.name(), "Orange");
assert_eq!(orange.price(), 1.7);
get, get_scoped and get_singleton
There are 3 ways to retrieve a value from the container:
get
get_scoped
get_singleton
And it named variants:
get_with_name
get_scoped_with_name
get_singleton_with_name
get_scoped
and get_singleton
are self-explanatory, they get
a value from a scoped
or singleton
provider.
But get
can get any scoped
and singleton
value,
the difference is that get
returns a Resolved<T>
and the others returns a T
or Arc<T>
for singletons.
Resolved<T>
is just an enum for a Scoped(T)
and Singleton(Arc<T>)
where you can convert it back using into_scoped
or into_singleton
,
the advantage of get is that it implements Deref
to use the value and its just easier
to call get
.
Derive Inject
This requires the
derive
feature.
Inject is implemented for all types that implement Default
.
and can be used with #[derive]
.
use dilib::{Singleton, Inject, Container};
use dilib_derive::*;
#[derive(Inject)]
struct Apple {
// Singleton is an alias for Arc<T>
#[inject(name="apple")]
tag: Singleton<String>,
#[inject(name="apple_price")]
price: f32
}
let mut container = Container::new();
container.add_singleton_with_name("apple", String::from("FRUIT_APPLE")).unwrap();
container.add_scoped_with_name("apple_price", || 2.0_f32).unwrap();
container.add_deps::<Apple>();
let apple = container.get::<Apple>().unwrap();
assert_eq!(apple.tag.as_ref(), "FRUIT_APPLE");
assert_eq!(apple.price, 2.0);
Global Container
This requires the
global
feature.
dilib
also offers a global container so you don't require
to declare your own container, and it's easier to access the container
with macros like get_scoped!
, get_singleton!
or just get_resolved!
,
you can also access the container directly using get_container()
.
use dilib::{global::init_container, resolve};
init_container(|container| {
container.add_scoped(|| String::from("Orange")).unwrap();
container.add_singleton_with_name("num", 123_i32).unwrap();
}).expect("unable to initialize the container");
let orange = resolve!(String).unwrap();
let num = resolve!(i32, "num").unwrap();
assert_eq!(orange.as_ref(), "Orange");
assert_eq!(*num, 123);
Provide
This requires the
unstable_provide
feature.
Why "unstable_provide"?
The feature unstable_provide
make possible to have dependency
injection more similar to other frameworks like C# EF Core
or Java Sprint
.
To allow run code before main we use the the ctor crate, which have been tested in several OS, so depending on where you run your application this feature may not be unstable for your use case.
provide macro
You can use the #[provide]
macro over any function or type that implements
**Inject
to register it to the global container.
use std::sync::RwLock;
use dilib::global::init_container;
use dilib::{resolve, Singleton, Inject, provide};
#[allow(dead_code)]
#[derive(Debug, Clone)]
struct User {
name: &'static str,
email: &'static str,
}
trait Repository<T> {
fn add(&self, item: T);
fn get_all(&self) -> Vec<T>;
}
#[derive(Default)]
#[provide(scope="singleton")]
struct Db(RwLock<Vec<User>>);
#[derive(Inject)]
#[provide(bind="Repository<User>")]
struct UserRepository(Singleton<Db>);
impl Repository<User> for UserRepository {
fn add(&self, item: User) {
self.0.0.write().unwrap().push(item);
}
fn get_all(&self) -> Vec<User> {
self.0.0.read().unwrap().clone()
}
}
// Initialize the container to register the providers
init_container(|_container| {
// Add additional providers
}).unwrap();
let user_repository = resolve!(trait Repository<User>).unwrap();
user_repository.add(User { name: "Marie", email: "marie@example.com" });
user_repository.add(User { name: "Natasha", email: "natasha@example.com" });
let users = user_repository.get_all();
let db = resolve!(Db).unwrap();
println!("Total users: {}", db.0.read().unwrap().len());
println!("{:#?}", users);
Dependencies
~0–340KB