7 releases (4 breaking)

0.5.0 Mar 28, 2023
0.4.2 Feb 15, 2023
0.3.0 Feb 7, 2023
0.2.0 Feb 3, 2023
0.1.0 Jan 13, 2023

#58 in Procedural macros

Download history 697/week @ 2024-08-03 817/week @ 2024-08-10 815/week @ 2024-08-17 998/week @ 2024-08-24 942/week @ 2024-08-31 859/week @ 2024-09-07 1129/week @ 2024-09-14 1240/week @ 2024-09-21 1303/week @ 2024-09-28 1060/week @ 2024-10-05 980/week @ 2024-10-12 1201/week @ 2024-10-19 884/week @ 2024-10-26 836/week @ 2024-11-02 1003/week @ 2024-11-09 950/week @ 2024-11-16

3,805 downloads per month
Used in 63 crates (24 directly)

MIT license

245KB
4.5K SLoC

Deluxe   Latest Version Documentation Build Status

A Rust procedural macro attribute parser.

Abstract

This crate offers attribute parsing closer to the design of attributes in C#. It has an interface similar to serde. Attributes are written as plain Rust structs or enums, and then parsers for them are generated automatically. They can contain arbitrary expressions and can inherit from other attributes using a flattening mechanism.

The parsers in this crate directly parse token streams using syn. As a result, most built-in Rust types and syn types can be used directly as fields.

Details

Functionality in this crate is centered around three traits, and their respective derive macros:

  • ExtractAttributes

    Extracts attributes from an object containing a list of syn::Attribute, and parses them into a Rust type. Should be implemented for top-level structures that will be parsed directly out of a set of matching attributes.

  • ParseAttributes

    Parses a Rust type from any object containing a list of syn::Attribute. Should be used if the set of matching attributes can potentially be shared between this type and other types.

  • ParseMetaItem

    Parses a Rust type from a syn::parse::ParseStream. Should be implemented for any types that can be nested inside an attribute.

Basic usage of this crate in derive macros requires simply deriving one (or a few) of these traits, and then calling extract_attributes or parse_attributes. For more advanced functionality, several #[deluxe(...)] attributes are supported on structs, enums, variants and fields. See the examples below, and the documentation for each derive macro for a complete description of the supported attributes.

A list of field types supported by default can be seen in the list of provided ParseMetaItem implementations. For more complex usage, manual implementations of these traits can be provided. See the documentation on the individual traits for more details on how to manually implement your own parsers.

Deluxe takes inspiration from the darling crate, but offers a few enhancements over it. Darling is built around pre-parsed syn::Meta objects, and therefore is restricted to the meta syntax. Deluxe parses its types directly from TokenStream objects in the attributes and so is able to use any syntax that parses as a valid token tree. Deluxe also does not provide extra traits for parsing special syn objects like DeriveInput and Field. Instead, Deluxe uses a generic trait to parse from any type containing a Vec<syn::Attribute>.

Examples

Basic Derive Macro

To create a derive macro that can add some simple metadata to a Rust type from an attribute, start by defining a struct that derives ExtractAttributes. Then, call extract_attributes in your derive macro to create an instance of the struct:

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(my_desc))] // Match only `my_desc` attributes
struct MyDescription {
    name: String,
    version: String,
}

#[proc_macro_derive(MyDescription, attributes(my_desc))]
pub fn derive_my_description(item: TokenStream) -> TokenStream {
    let mut input = syn::parse::<syn::DeriveInput>(item).unwrap();

    // Extract a description, modifying `input.attrs` to remove the matched attributes.
    let MyDescription { name, version } = match deluxe::extract_attributes(&mut input) {
        Ok(desc) => desc,
        Err(e) => return e.into_compile_error().into()
    };

    let ident = &input.ident;
    let (impl_generics, type_generics, where_clause) = input.generics.split_for_impl();

    let tokens = quote::quote! {
        impl #impl_generics #ident #type_generics #where_clause {
            fn my_desc() -> &'static str {
                concat!("Name: ", #name, ", Version: ", #version)
            }
        }
    };
    tokens.into()
}

Then, try adding the attribute in some code that uses your macro:

#[derive(MyDescription)]
#[my_desc(name = "hello world", version = "0.2")]
struct Hello(String);

let hello = Hello("Moon".into());
assert_eq!(hello.my_desc(), "Name: hello world, Version: 0.2");

Basic Attribute Macro

The parse and parse2 functions included in this crate can also be used as simple helpers for attribute macros:

#[derive(deluxe::ParseMetaItem)]
struct MyDescription {
    name: String,
    version: String,
}

#[proc_macro_attribute]
pub fn my_desc(
    attr: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let MyDescription { name, version } = match deluxe::parse::<MyDescription>(attr) {
        Ok(desc) => desc,
        Err(e) => return e.into_compile_error().into()
    };

    let tokens = quote::quote! {
        fn my_desc() -> &'static str {
            concat!("Name: ", #name, ", Version: ", #version)
        }
        #item
    };
    tokens.into()
}
// In your normal code

#[my_desc(name = "hello world", version = "0.2")]
fn nothing() {}

assert_eq!(my_desc(), "Name: hello world, Version: 0.2");

Field Attributes

The attributes alias, default, rename, and skip are supported, and behave the same as in Serde. The append attribute can be used on Vec fields to aggregate all duplicates of a key. The rest attribute can be used to do custom processing on any unknown keys.

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(my_object))]
struct MyObject {
    // Can be specified with key `id` or `object_id`
    #[deluxe(alias = object_id)]
    id: u64,

    // Field is optional, defaults to `Default::default` if not present
    #[deluxe(default)]
    count: u64,

    // Defaults to "Empty" if not present
    #[deluxe(default = String::from("Empty"))]
    contents: String,

    // Can be specified only with key `name`
    #[deluxe(rename = name)]
    s: String,

    // Skipped during parsing entirely
    #[deluxe(skip)]
    internal_flag: bool,

    // Appends any extra fields with the key `expr` to the Vec
    #[deluxe(append, rename = expr)]
    exprs: Vec<syn::Expr>,

    // Adds any unknown keys to the hash map
    #[deluxe(rest)]
    rest: std::collections::HashMap<syn::Path, syn::Expr>,
}
// Omitted fields will be set to defaults
#[derive(MyObject)]
#[my_object(id = 1, name = "First", expr = 1 + 2, count = 3)]
struct FirstObject;

// `expr` can be specified multiple times because of the `append` attribute
#[derive(MyObject)]
#[my_object(object_id = 2, name = "Second", expr = 1 + 2, expr = 3 + 4)]
struct SecondObject;

// `unknown` and `extra` will be stored in the `rest` hashmap
#[derive(MyObject)]
#[my_object(id = 3, name = "Third", unknown = 1 + 2, extra = 3 + 4)]
struct ThirdObject;

Inheritance

The flatten attribute can be used to parse keys from one structure inside another:

#[derive(deluxe::ParseMetaItem)]
struct A {
    id: u64,
}

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(b))]
struct B {
    #[deluxe(flatten)]
    a: A,
    name: String,
}

Then, fields from both A and B can be used when deriving B:

#[derive(B)]
#[b(id = 123, name = "object")]
struct Object;

Attributes in Nested Code

Extra attributes can be taken from within the code block attached to a macro. When used in an attribute macro, the attributes should be consumed so as not to produce an "unknown attribute" error when outputting tokens.

#[derive(Default, deluxe::ParseMetaItem, deluxe::ExtractAttributes)]
struct MyDescription {
    name: String,
    version: String,
}

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(author))]
struct Authors(#[deluxe(flatten)] Vec<String>);

#[proc_macro_derive(MyDescription, attributes(my_desc))]
pub fn derive_my_description(item: TokenStream) -> TokenStream {
    let mut input = syn::parse::<syn::DeriveInput>(item).unwrap();

    // Parsing functions suffixed with `_optional` can be used to continue
    // parsing after an error. Any errors will get accumulated into an `Errors`
    // structure, which can then be manually included in the token output to
    // produce compile errors.
    let errors = deluxe::Errors::new();
    let MyDescription { name, version } = deluxe::extract_attributes_optional(&mut input, &errors);

    let mut authors = Vec::new();
    if let syn::Data::Struct(s) = &mut input.data {
        // Look through all fields in the struct for `author` attributes
        for field in s.fields.iter_mut() {
            // Aggregate any errors to avoid exiting the loop early
            match deluxe::extract_attributes(field) {
                Ok(Authors(a)) => authors.extend(a),
                Err(e) => errors.push_syn(e),
            }
        }
    }

    let ident = &input.ident;
    let (impl_generics, type_generics, where_clause) = input.generics.split_for_impl();

    // Make sure to include the errors in the output
    let tokens = quote::quote! {
        #errors
        impl #impl_generics #ident #type_generics #where_clause {
            fn my_desc() -> &'static str {
                concat!("Name: ", #name, ", Version: ", #version #(, ", Author: ", #authors)*)
            }
        }
    };
    tokens.into()
}

#[proc_macro_attribute]
pub fn my_desc_mod(
    attr: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let mut module = syn::parse::<syn::ItemMod>(item) {
        Ok(module) => module,
        Err(e) => return e.into_compile_error().into()
    };

    let errors = deluxe::Errors::new();
    let MyDescription { name, version } = deluxe::parse_optional(attr, &errors);

    let (_, items) = module.content.as_mut().unwrap();

    let mut authors = Vec::new();
    // Look through all items in the module for `author` attributes
    for i in items.iter_mut() {
        // Extract the attributes to remove them from the final output
        match deluxe::extract_attributes(i) {
            Ok(Authors(a)) => authors.extend(a),
            Err(e) => errors.push_syn(e),
        }
    }

    // Place a new function inside the module
    items.push(syn::parse_quote! {
        fn my_desc() -> &'static str {
            concat!("Name: ", #name, ", Version: ", #version #(, ", Author: ", #authors)*)
        }
    });

    // Make sure to include the errors in the output
    let tokens = quote::quote! { #module #errors };
    tokens.into()
}
// In your normal code

#[derive(MyDescription, Default)]
#[my_desc(name = "hello world", version = "0.2")]
struct Hello {
    #[author("Alice")]
    a: i32,
    #[author("Bob")]
    b: String
}

let hello: Hello = Default::default();
assert_eq!(hello.my_desc(), "Name: hello world, Version: 0.2, Author: Alice, Author: Bob");

#[my_desc_mod(name = "hello world", version = "0.2")]
mod abc {
    #[author("Alice", "Bob")]
    fn func1() {}

    #[author("Carol")]
    #[author("Dave")]
    fn func2() {}
}

assert_eq!(
    abc::my_desc(),
    "Name: hello world, Version: 0.2, Author: Alice, Author: Bob, Author: Carol, Author: Dave"
);

Tuple Structs, Tuples and Vecs

Deluxe also supports parsing into data structures with unnamed fields.

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(my_tuple))]
struct MyTuple(u64, String);

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(my_idents))]
struct MyIdents {
    id: u64,
    names: (String, String),
    idents: Vec<syn::Ident>
}

The standard attribute syntax with parenthesis can be used when specifying a Vec type. The alternative syntax key = [...] can also be used to have an appearance similar to an array literal.

#[derive(MyTuple)]
#[my_tuple(123, "object")]
struct Object;

#[derive(MyIdents)]
#[my_idents(id = 7, names("hello", "world"), idents(a, b, c))]
struct ABC;

// `idents` contains same values as above
#[derive(MyIdents)]
#[my_idents(id = 7, names("hello", "world"), idents = [a, b, c])]
struct ABC2;

C#-styled Attributes

Attributes in C# can support positional arguments first with the named arguments afterwards. This style can be emulated by using a tuple struct with a normal struct flattened at the end. Placing #[deluxe(default)] on the struct behaves the same as Serde, by filling in all fields with values from Default, allowing every named argument to be optional.

#[derive(deluxe::ParseMetaItem, Default)]
#[deluxe(default)]
struct Flags {
    native: bool,
}

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(a))]
struct A(u64, String, #[deluxe(flatten)] Flags);
#[derive(A)]
#[a(123, "object")]
struct Object;

#[derive(A)]
#[a(123, "native-object", native = true)]
struct NativeObject;

Enums

Enums are supported by using the variant name as a single key, in snake-case. Variants can be renamed, aliased and skipped in the same way as fields.

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(my_enum))]
enum MyEnum {
    A,
    B,
    C,
    #[deluxe(alias = d)]
    AnotherOne,
    #[deluxe(rename = e)]
    AnotherTwo,
    #[deluxe(skip)]
    SkipMe
}
#[derive(MyEnum)]
#[my_enum(b)]
struct ObjectB;

#[derive(MyEnum)]
#[my_enum(another_one)]
struct ObjectD;

Complex Enums

Enums with struct and tuple variants are also supported. The data inside is used as arguments to the attribute. All field attributes from structs are also supported inside variants.

Additionally, enum variants with named fields can be flattened. The behavior of a flattened variant is similar to Serde's untagged mode. In a flattened variant, the name of the variant will be ignored. Instead, Deluxe will attempt to use the unique keys in each variant to determine if that variant was specified. A compile error will be thrown if it is not possible to determine a unique, unambiguous key between two variants.

#[derive(deluxe::ExtractAttributes)]
#[deluxe(attributes(my_enum))]
enum MyEnum {
    A,
    B(u64, String),
    C { id: u64, name: String },
    #[deluxe(flatten)]
    D { d: u64, name: String },
}
#[derive(MyEnum)]
#[my_enum(a)]
struct ObjectA;

#[derive(MyEnum)]
#[my_enum(b(1, "hello"))]
struct ObjectB;

#[derive(MyEnum)]
#[my_enum(c(id = 2, name = "world"))]
struct ObjectC;

// No inner parenthesis needed here due to flattening
#[derive(MyEnum)]
#[my_enum(d = 3, name = "moon")]
struct ObjectD;

Storing Containers

During parsing, Deluxe can store references to the container type holding the attributes for easier access. Container fields are skipped during attribute parsing.

#[derive(deluxe::ParseAttributes)]
#[deluxe(attributes(my_object))]
struct MyObject<'t> {
    id: u64,
    // Fill `container` in using the parsed type. Note this restricts the
    // derived `ParseAttributes` impl so it can only be used on `DeriveInput`.
    #[deluxe(container)]
    container: &'t syn::DeriveInput,
}

#[proc_macro_derive(MyObject, attributes(my_desc))]
pub fn derive_my_object(item: TokenStream) -> TokenStream {
    let input = syn::parse::<syn::DeriveInput>(item).unwrap();

    // `obj.container` now holds a reference to `input`
    let obj: MyObject = match deluxe::parse_attributes(&input) {
        Ok(obj) => obj,
        Err(e) => return e.into_compile_error().into()
    };

    let tokens = quote::quote! { /* ... generate some code here ... */ };

    tokens.into()
}

To support both extracting and parsing, a container field can also be a value type. In that case, the container will be cloned into the structure.

Dependencies

~3MB
~58K SLoC