#condition #flow #branch #error #cortex #processing #processor

cortex-ai

An asynchronous flow-based processing framework for building flexible data pipelines with conditional branching and error handling

2 releases

0.1.9 Nov 14, 2024
0.1.0 Oct 30, 2024

#430 in Rust patterns

Download history 114/week @ 2024-10-29 12/week @ 2024-11-05 117/week @ 2024-11-12 14/week @ 2024-11-19 4/week @ 2024-11-26 4/week @ 2024-12-10

65 downloads per month
Used in cortex-sources

Apache-2.0

50KB
398 lines

Cortex Flow

Crates.io Documentation License: MIT Coverage Status

A high-performance, asynchronous data processing pipeline library in Rust. Implemented to be used in RAG applications providing ready to use OpenAI compatible APIs, especially OpenRouter.ai.

Features

  • ๐Ÿš€ Async design for high throughput
  • ๐Ÿ”„ Flexible flow composition with branching
  • ๐Ÿ”ง Modular and extensible architecture
  • ๐Ÿ“Š Built-in feedback mechanism
  • ๐Ÿ›ก๏ธ Type-safe data processing
  • ๐Ÿ“ˆ Performance benchmarking
  • ๐Ÿงช Comprehensive testing and documentation
  • ๐Ÿ“š Example processors, sources, conditions and best practices
  • ๐Ÿ”’ Safe Rust

Installation

Add this to your Cargo.toml:

[dependencies]
cortex-ai = "0.1.0"

Quick Start

use cortex_ai::{Flow, Source, Processor, Condition};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let flow = Flow::new()
        .source(MySource)
        .process(MyProcessor)
        .when(MyCondition)
        .process(ThenProcessor)
        .otherwise()
        .process(ElseProcessor)
        .end();
    flow.run_stream(shutdown_rx).await?;
    Ok(())
}

Usage Examples

Simple Processing Flow

let flow = Flow::new()
    .source(DataSource::new())
    .process(DataProcessor::new())
    .run_stream(shutdown_rx)
    .await?;

Conditional Branching

let flow = Flow::new()
    .source(DataSource::new())
    .when(ValidationCondition::new())
    .process(ValidDataProcessor::new())
    .otherwise()
    .process(InvalidDataProcessor::new())
    .end();

Performance

Benchmark results for different flow configurations:

  • Simple Flow: ~1M messages/sec
  • Branching Flow: ~800K messages/sec
  • Complex Flow: ~500K messages/sec
  • Concurrent Flow: ~700K messages/sec

Run benchmarks with:

just bench

Development

Prerequisites

  • Rust 1.80 or higher
  • Cargo
  • just

Building

just build

Testing

just test

Formatting & Linting

just check

Running the sample project

just sample

Project Layout

cortex-ai/
โ”œโ”€โ”€ src/
โ”‚ โ”œโ”€โ”€ composer/ # Flow composition
โ”‚ โ”œโ”€โ”€ flow/ # Core flow components
โ”‚ โ””โ”€โ”€ lib.rs # Public API   
โ”œโ”€โ”€ tests/ # unit tests
โ””โ”€โ”€ benches/ # performance benchmarks

cortex-processors/
โ”œโ”€โ”€ src/
โ”‚ โ””โ”€โ”€ processors/ # Processor implementations
โ”‚ โ””โ”€โ”€ lib.rs # Public API   
โ”œโ”€โ”€ tests/ # unit tests
โ””โ”€โ”€ benches/ # performance benchmarks

cortex-sources/
โ”œโ”€โ”€ src/
โ”‚ โ””โ”€โ”€ sources/ # Source implementations
โ”‚ โ””โ”€โ”€ lib.rs # Public API   
โ”œโ”€โ”€ tests/ # unit tests
โ””โ”€โ”€ benches/ # performance benchmarks

cortex-conditions/
โ”œโ”€โ”€ src/
โ”‚ โ””โ”€โ”€ conditions/ # Condition implementations
โ”‚ โ””โ”€โ”€ lib.rs # Public API   
โ”œโ”€โ”€ tests/ # unit tests
โ””โ”€โ”€ benches/ # performance benchmarks

Implementing a New Processor

To add a new processor to your flow, implement the Processor trait:

use cortex_ai::{FlowComponent, Processor, FlowFuture};
// 1. Define your processor struct
#[derive(Clone)]
struct MultiplicationProcessor {
    // Add any configuration or state here
    multiplier: i32,
}
// 2. Implement FlowComponent to define types
impl FlowComponent for MultiplicationProcessor {
    type Input = i32; // Input type
    type Output = i32; // Output type
    type Error = MyError; // Error type
}
// 3. Implement the Processor trait
impl Processor for MultiplicationProcessor {
    fn process(&self, input: Self::Input) -> FlowFuture<', Self::Output, Self::Error> {
        let multiplier = self.multiplier;
        Box::pin(async move {
            // Process your data here

            Ok(input * multiplier)
        })
    }
}
// 4. Use in a flow
let flow = Flow::new()
    .source(MySource::new())
    .process(MultiplicationProcessor { multiplier: 2 })
    .process(AnotherProcessor::new());

Best Practices

1. Make your processor `Clone` if possible
2. Keep processing functions pure and stateless
3. Use appropriate error types
4. Document input/output requirements
5. Add unit tests for your processor

Example: String Processor

#[derive(Clone)]
struct StringTransformer;

impl FlowComponent for StringTransformer {
    type Input = String;
    type Output = String;
    type Error = ProcessError;
}
impl Processor for StringTransformer {
    fn process(&self, input: Self::Input) -> FlowFuture<', Self::Output, Self::Error> {
        Box::pin(async move {
            Ok(input.to_uppercase())
        })
    }
}
#[cfg(test)]
mod tests {
    #[tokio::test]
    async fn test_string_transformer() {
        let processor = StringTransformer;
        let result = processor.process("hello".to_string()).await;
        assert_eq!(result.unwrap(), "HELLO");
    }
}

Implementing a New Source

To create a new data source for your flow, implement the Source trait:

use cortex_ai::{FlowComponent, Source, FlowFuture};

// 1. Define your source struct
#[derive(Clone)]
struct MySource {
    // Add any configuration or state here
}

// 2. Implement FlowComponent to define types
impl FlowComponent for MySource {
    type Input = MyInput; // Input type
    type Output = MyOutput; // Output type
    type Error = MyError; // Error type
}

// 3. Implement the Source trait
impl Source for MySource {
    fn source(&self) -> FlowFuture<', Self::Output, Self::Error> {
        Box::pin(async move {
            // Source your data here

            Ok(MyOutput)
        })
    }
}

// 4. Use in a flow
let flow = Flow::new()
    .source(MySource::new())
    .process(MyProcessor)
    .run_stream(shutdown_rx)
    .await?;

Example: Kafka Source

use cortex_ai::{FlowComponent, Source, FlowFuture, SourceOutput};
use flume::bounded;

// 1. Define your source struct
#[derive(Clone)]
struct KafkaSource {
    topic: String,
    broker: String,
}

// 2. Implement FlowComponent to define types
impl FlowComponent for KafkaSource {
    type Input = (); // Source input is always ()
    type Output = String; // Define what your source produces
    type Error = SourceError; // Your error type
}

// 3. Implement the Source trait
impl Source for KafkaSource {
    fn stream(&self) -> FlowFuture<', SourceOutput<Self::Output, Self::Error>, Self::Error> {
        let topic = self.topic.clone();
        let broker = self.broker.clone();
        Box::pin(async move {
            // Create channels for data and feedback
            let (tx, rx) = bounded(1000);
            let (feedback_tx, feedback_rx) = bounded(1000);
            // Handle feedback in a separate task
            tokio::spawn(async move {
                while let Ok(result) = feedback_rx.recv_async().await {
                    match result {
                        Ok(data) => {
                            // Successfully processed message
                            println!("Message processed: {}", data);
                            // Here you could commit offset in Kafka
                        }
                        Err(e) => {
                            // Processing failed
                            println!("Processing failed: {}", e);
                            // Here you could implement retry logic
                        }
                    }
                }
            });
            // Set up your actual source (e.g., Kafka consumer)
            // let consumer = KafkaConsumer::new(broker, topic);
            // Start producing messages
            tokio::spawn(async move {
                loop {
                    // Fetch message from your source
                    // let msg = consumer.fetch().await?;
                    let msg = "sample message".to_string();
                    if tx.send(Ok(msg)).is_err() {
                        break; // Channel closed
                    }
                }
            });
            Ok(SourceOutput {
                receiver: rx,
                feedback: feedback_tx,
            })
        })
    }
}

// 4. Use in a flow
let source = KafkaSource {
    topic: "my-topic".to_string(),
    broker: "localhost:9092".to_string(),
};
let flow = Flow::new()
    .source(source)
    .process(MyProcessor::new());

Best Practices for Sources

1. Feedback Handling
   - Always process feedback to track message status
   - Implement proper commit/acknowledgment logic
   - Handle errors appropriately

2. Channel Sizing
   - Choose appropriate buffer sizes
   - Consider backpressure mechanisms
   - Monitor channel capacity

3. Error Handling
   - Use specific error types
   - Provide context in errors
   - Consider retry strategies

4. Resource Management
   - Clean up resources when channel closes
   - Handle shutdown gracefully
   - Monitor resource usage

Implementing a New Condition

Here's an example of implementing a condition that checks if a key exists in Redis:

use cortex_ai::{FlowComponent, Condition, ConditionFuture};
use redis::AsyncCommands;
use std::sync::Arc;

// 1. Define your condition struct
#[derive(Clone)]
struct RedisExistsCondition {
    client: Arc<redis::Client>,
    prefix: String,
}
impl RedisExistsCondition {
    pub fn new(redis_url: &str, prefix: &str) -> redis::RedisResult<Self> {
        Ok(Self {
            client: Arc::new(redis::Client::open(redis_url)?),
            prefix: prefix.to_string(),
        })
    }
}

// 2. Define custom error type
#[derive(Debug, thiserror::Error)]
pub enum RedisConditionError {
    #[error("Redis error: {0}")]
    Redis(#[from] redis::RedisError),
    #[error("Invalid input: {0}")]
    InvalidInput(String),
}

// 3. Implement FlowComponent to define types
impl FlowComponent for RedisExistsCondition {
    type Input = String; // Input key to check
    type Output = String; // Pass through the key
    type Error = RedisConditionError; // Custom error type
}

// 4. Implement the Condition trait
impl Condition for RedisExistsCondition {
        fn evaluate(&self, input: Self::Input) -> ConditionFuture<', Self::Output, Self::Error> {
        let client = self.client.clone();
        let key = format!("{}:{}", self.prefix, input);
        Box::pin(async move {
            // Get Redis connection
            let mut conn = client.get_async_connection().await?;
            // Check if key exists
            let exists: bool = conn.exists(&key).await?;
            // Return condition result and optional output
            Ok((exists, Some(input)))
        })
    }
}

// 5. Use in a flow
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let condition = RedisExistsCondition::new(
        "redis://localhost:6379",
        "myapp:cache"
    )?;
    
    let flow = Flow::new()
        .source(MessageSource::new())
        .when(condition)
        .process(CacheHitProcessor::new())
        .otherwise()
        .process(CacheMissProcessor::new())
        .end();

    flow.run_stream(shutdown_rx).await?;

    Ok(())
}
// 6. Test the condition
#[cfg(test)]
mod tests {
    use super::*;
    #[tokio::test]
    async fn test_redis_condition() {
        let condition = RedisExistsCondition::new(
            "redis://localhost:6379",
            "test"
        ).unwrap();
        // Set up test data
        let mut conn = condition.client.get_async_connection().await.unwrap();
        conn.set("test:key1", "value1").await.unwrap();
        // Test existing key
        let result = condition.evaluate("key1".to_string()).await.unwrap();
        assert!(result.0); // Should exist
        assert_eq!(result.1, Some("key1".to_string()));
        // Test non-existing key
        let result = condition.evaluate("key2".to_string()).await.unwrap();
        assert!(!result.0); // Should not exist
        assert_eq!(result.1, Some("key2".to_string()));
    }
}

Best Practices for Conditions

  1. Error Handling:

    • Use custom error types with thiserror
    • Provide meaningful error messages
    • Handle all possible failure cases
  2. Resource Management:

    • Share connections using Arc when possible
    • Handle connection failures gracefully
    • Clean up resources properly
  3. Testing:

    • Test both positive and negative cases
    • Test error conditions
    • Use test fixtures or mocks for external services
  4. Performance:

    • Cache connections when possible
    • Use connection pools for databases
    • Consider timeout settings

Example: Complex Condition

// Combine multiple conditions
#[derive(Clone)]
struct CombinedCondition<T> {
    conditions: Vec<T>,
    require_all: bool,
}

impl<T> CombinedCondition<T>
where
    T: Condition + Clone,
    T::Input: Clone,
    T::Output: Clone,
    T::Error: From<&'static str>,
{
    fn new(conditions: Vec<T>, require_all: bool) -> Self {
        Self {
            conditions,
            require_all,
        }
    }
}
impl<T> FlowComponent for CombinedCondition<T>
where
    T: Condition + Clone,
    T::Input: Clone,
    T::Output: Clone,
    T::Error: From<&'static str>,
{
    type Input = T::Input;
    type Output = T::Output;
    type Error = T::Error;
}

impl<T> Condition for CombinedCondition<T>
where
    T: Condition + Clone,
    T::Input: Clone,
    T::Output: Clone,
    T::Error: From<&'static str>,
{
    fn evaluate(&self, input: Self::Input) -> ConditionFuture<', Self::Output, Self::Error> {
        let conditions = self.conditions.clone();
        let require_all = self.require_all;
        let input_clone = input.clone();
        Box::pin(async move {
            let mut results = Vec::new();
            for condition in conditions {
                let (result, _ ) = condition.evaluate(input_clone.clone()).await?;
                results.push(result);
            }
            let final_result = if require_all {
                results.iter().all(|&r| r)
            } else {
                results.iter().any(|&r| r)
            };
            Ok((final_result, Some(input)))
        })
    }
}

Using Combined Conditions

Here's how to use multiple conditions together:

use cortex_ai::{Flow, FlowComponent, Condition, ConditionFuture};

// Individual conditions
#[derive(Clone)]
struct RedisExistsCondition {
// ... implementation from previous example ...
}

#[derive(Clone)]
struct RateLimitCondition {
    max_requests: u32,
    window_secs: u64,
}

impl FlowComponent for RateLimitCondition {
    type Input = String;
    type Output = String;
    type Error = RedisConditionError;
}

impl Condition for RateLimitCondition {
    fn evaluate(&self, input: Self::Input) -> ConditionFuture<', Self::Output, Self::Error> {
        Box::pin(async move {
            // Check rate limit logic here
            Ok((true, Some(input)))
        })
    }
}

#[derive(Clone)]
struct WhitelistCondition {
    allowed_prefixes: Vec<String>,
}

impl FlowComponent for WhitelistCondition {
    type Input = String;
    type Output = String;
    type Error = RedisConditionError;
}

impl Condition for WhitelistCondition {
    fn evaluate(&self, input: Self::Input) -> ConditionFuture<', Self::Output, Self::Error> {
        let allowed = self.allowed_prefixes.iter()
            .any(|prefix| input.starts_with(prefix));
        Box::pin(async move {
            Ok((allowed, Some(input)))
        })
    }
}

// Usage example
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create individual conditions
    let redis_condition = RedisExistsCondition::new(
        "redis://localhost:6379",
        "myapp:cache",
    )?;

    let rate_limit = RateLimitCondition {
        max_requests: 100,
        window_secs: 60,
    };

    let whitelist = WhitelistCondition {
        allowed_prefixes: vec!["user_".to_string(), "admin_".to_string()],
    };

    // Combine conditions - ALL must be true
    let strict_condition = CombinedCondition::new(
        vec![
            redis_condition,
            rate_limit,
            whitelist,
        ],
        true, // require_all = true
    );
    // Combine conditions - ANY can be true
    let relaxed_condition = CombinedCondition::new(
        vec![
            redis_condition,
            rate_limit,
            whitelist,
        ],
        false, // require_all = false
    );
    // Use in flows
    let strict_flow = Flow::new()
        .source(MessageSource::new())
        .when(strict_condition)
        .process(AllChecksPassedProcessor::new())
        .otherwise()
        .process(SomeCheckFailedProcessor::new())
        .end();

    let relaxed_flow = Flow::new()
        .source(MessageSource::new())
        .when(relaxed_condition)
        .process(AnyCheckPassedProcessor::new())
        .otherwise()
        .process(AllChecksFailedProcessor::new())
        .end();

    // Run both flows
    tokio::join!(
        strict_flow.run_stream(strict_shutdown_rx),
        relaxed_flow.run_stream(relaxed_shutdown_rx),
    );
    Ok(())
}
// Testing combined conditions
#[cfg(test)]
mod tests {
    use super::*;
    #[tokio::test]
    async fn test_combined_conditions() {
        // Set up test conditions
        let redis_condition = RedisExistsCondition::new(
            "redis://localhost:6379",
            "test",
        ).unwrap();
        let rate_limit = RateLimitCondition {
            max_requests: 100,
            window_secs: 60,
        };
        let whitelist = WhitelistCondition {
            allowed_prefixes: vec!["user_".to_string()],
        };
        // Test strict condition (ALL must pass)
        let strict = CombinedCondition::new(
            vec![redis_condition.clone(), rate_limit.clone(), whitelist.clone()],
            true,
        );
        // Test relaxed condition (ANY can pass)
        let relaxed = CombinedCondition::new(
            vec![redis_condition, rate_limit, whitelist],
            false,
        );
        // Set up test data
        let mut conn = redis::Client::open("redis://localhost:6379")
            .unwrap()
            .get_async_connection()
            .await
            .unwrap();

        conn.set("test:user_123", "value").await.unwrap();
        // Test valid input
        let result = strict.evaluate("user_123".to_string()).await.unwrap();
        assert!(result.0); // All conditions should pass
        // Test invalid input
        let result = strict.evaluate("invalid_456".to_string()).await.unwrap();
        assert!(!result.0); // Should fail whitelist check
        // Test relaxed condition
        let result = relaxed.evaluate("invalid_456".to_string()).await.unwrap();
        assert!(result.0); // Should pass rate limit check even if others fail
    }
}

Common Use Cases for Combined Conditions

  1. Access Control:

    let access_check = CombinedCondition::new(vec![
        AuthTokenCondition::new(),
        RoleCondition::new(),
        PermissionCondition::new(),
    ], true);
    
  2. Data Validation:

    let validation = CombinedCondition::new(vec![
        SchemaValidation::new(),
        BusinessRuleValidation::new(),
        DataIntegrityCheck::new(),
    ], true);
    
  3. Routing Logic:

    let routing = CombinedCondition::new(vec![
        CapacityCheck::new(),
        LoadBalancingCheck::new(),
        HealthCheck::new(),
    ], false);
    

Contributing

Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Guidelines

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Acknowledgments

  • Inspired by modern data processing pipelines
  • Built with Rust's async ecosystem
  • Performance-focused design

Contact

Dependencies

~3โ€“9.5MB
~83K SLoC