#file-format #key-value #key-value-store #index #compact #numbers #sparse

bin+lib binstore

A simple key-value store written in Rust. Uses its own compact file format.

1 unstable release

0.2.0 Sep 15, 2019

#328 in Database implementations

MIT license

61KB
1.5K SLoC

Binstore

Binstore is a simple key-value store written in Rust. This means that serialization/deserialization is not handled by binstore. All it does is storing key-value elements in a cache-friendly and compact file format. For now, this project is mostly for fun, but could hopefully evolve into something useable in the future.

File format

Headers

Field name Description Type
magic Magic number u32
version Version number u8
timestamp Creation timestamp i64
si_base_offset Where the sparse index begins u64
di_base_offset Where the dense index begins u64
data_base_offset Where the compressed data begins u64
num_entries Number of entries in file u64

Sparse Index

Key DI Offset
h_0000 di_off_1
h_1000 di_off_2
h_2000 di_off_3
... ...
h_xxxx di_off_x

Dense Index

DI Offset Key Data Offset
di_off_1 h_0000 data_off_1
h_0001 data_off_2
h_0013 data_off_3
... ... ...
h_0988 data_off_4
di_off_2 h_1000 data_off_5
h_1003 data_off_6
... ... ...
di_off_x h_xxxx data_off_x

Data

Data Offset Data
data_off_1 LZ4_1
data_off_2 LZ4_2
data_off_3 LZ4_3
... ...
data_off_x LZ4_x

Explanation

A binstore file is split in four sections:

  1. The headers. The headers help us identify a binstore file (via the magic number), they allow us to know whether the current binstore engine can read a given binstore file (version number), and when the binstore file was created. We also store the offsets for the other sections and the number of entries stored in this data file.
  2. The sparse index. An index of no more than 1-2 MB; the sparse is used to jump into the dense index at roughly the spot where the key we are looking for is located. The sparse index is essential to avoid a full scan.
  3. The dense index. In the dense index, there is a mapping from a key (keys are explained below) to the file offset where the set of Values associated with that key is stored. The dense index entries are of fixed sized and are ordered by their keys; this enables binary searching.
  4. The data. This is where the actual Values are stored. To save space, we use the LZ4 compression algorithm.

Examples

Query

use std::iter::FromIterator;
use std::collections::{BTreeMap, BTreeSet};
use tempfile::NamedTempFile;
use binstore::bucket::*;

fn main() {
    let mut bmap = BTreeMap::new();
    for key in 0 .. 100 {
        bmap.insert(key as u64, BTreeSet::from_iter(0 .. (key as u128)));
    }

    let tmp = NamedTempFile::new().unwrap();
    create(tmp.path(), &bmap).expect("create");

    {
        let bucket = Bucket::open(tmp.path()).expect("open");
        let mut bucket = bucket.check_headers().expect("check_headers");
        let si = bucket.read_sparse_index().expect("sparse index");

        for (key, actual_values) in &bmap {
            let (offset_1, offset_2) = si.try_get(*key).expect("try_get");
            let values = bucket.try_get(*key, offset_1, offset_2)
                .expect("try_get (1)")
                .expect("try_get (2)");
            assert_eq!(actual_values, &values);
        }
    }
}

Merge

use std::iter::FromIterator;
use std::collections::{BTreeMap, BTreeSet};
use tempfile::NamedTempFile;
use binstore::bucket::*;

fn main() {
    let mut bmap1 = BTreeMap::new();
    for key in 0 .. 100 {
        bmap1.insert(key as u64, BTreeSet::from_iter(0 .. (key as u128)));
    }

    let mut bmap2 = BTreeMap::new();
    for key in 0 .. 200 {
        bmap2.insert(key as u64, BTreeSet::from_iter(0 .. (key as u128)));
    }

    let tmp1 = NamedTempFile::new().unwrap();
    let tmp2 = NamedTempFile::new().unwrap();
    let merged_file = NamedTempFile::new().unwrap();

    create(tmp1.path(), &bmap1).unwrap();
    create(tmp2.path(), &bmap2).unwrap();
    merge(tmp1.path(), tmp2.path(), merged_file.path()).unwrap();
}

More examples will be added to examples/ in the future.

Dependencies

~7–17MB
~210K SLoC