22 releases (breaking)
0.18.0 | Feb 19, 2024 |
---|---|
0.17.0 | Nov 22, 2023 |
0.16.0 | Nov 22, 2023 |
0.13.0 | Feb 17, 2023 |
0.3.0 | Jun 17, 2022 |
#1708 in Parser implementations
95 downloads per month
45KB
760 lines
Boring Data Tool (bdt) 🤓
Command-line tool for viewing, querying, converting, and comparing files in popular data formats (CSV, Parquet, JSON, and Avro).
Powered by Apache Arrow and DataFusion.
Features
- View file schemas
- View contents of files
- Run SQL queries against files
- Convert between file formats
- Compare contents of two files, allowing an epsilon to be provided for floating point comparisons
- View Parquet file metadata (statistics)
- Supports CSV, JSON, Parquet, and Avro file formats
Installation
Rust must be installed first. Follow instructions at https://rustup.rs/.
cargo install bdt
Usage
Boring Data Tool
USAGE:
bdt <SUBCOMMAND>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
SUBCOMMANDS:
compare Compare the contents of two files
convert Convert a file to a different format
count Show the row count of the file
help Prints this message or the help of the given subcommand(s)
query Run a SQL query against one or more files
schema View schema of a file
view View contents of a file
view-parquet-meta View Parquet metadata
Examples
View File Schema
bdt schema /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet
+-----------------------+-----------------------------+-------------+
| column_name | data_type | is_nullable |
+-----------------------+-----------------------------+-------------+
| VendorID | Int64 | YES |
| tpep_pickup_datetime | Timestamp(Nanosecond, None) | YES |
| tpep_dropoff_datetime | Timestamp(Nanosecond, None) | YES |
| passenger_count | Float64 | YES |
| trip_distance | Float64 | YES |
| RatecodeID | Float64 | YES |
| store_and_fwd_flag | Utf8 | YES |
| PULocationID | Int64 | YES |
| DOLocationID | Int64 | YES |
| payment_type | Int64 | YES |
| fare_amount | Float64 | YES |
| extra | Float64 | YES |
| mta_tax | Float64 | YES |
| tip_amount | Float64 | YES |
| tolls_amount | Float64 | YES |
| improvement_surcharge | Float64 | YES |
| total_amount | Float64 | YES |
| congestion_surcharge | Float64 | YES |
| airport_fee | Float64 | YES |
+-----------------------+-----------------------------+-------------+
View File Contents
$ bdt view /path/to/file.parquet --limit 10
+-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+
| t_time_sk | t_time_id | t_time | t_hour | t_minute | t_second | t_am_pm | t_shift | t_sub_shift | t_meal_time |
+-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+
| 0 | AAAAAAAABAAAAAAA | 0 | 0 | 0 | 0 | AM | third | night | |
| 1 | AAAAAAAACAAAAAAA | 1 | 0 | 0 | 1 | AM | third | night | |
| 2 | AAAAAAAADAAAAAAA | 2 | 0 | 0 | 2 | AM | third | night | |
| 3 | AAAAAAAAEAAAAAAA | 3 | 0 | 0 | 3 | AM | third | night | |
| 4 | AAAAAAAAFAAAAAAA | 4 | 0 | 0 | 4 | AM | third | night | |
| 5 | AAAAAAAAGAAAAAAA | 5 | 0 | 0 | 5 | AM | third | night | |
| 6 | AAAAAAAAHAAAAAAA | 6 | 0 | 0 | 6 | AM | third | night | |
| 7 | AAAAAAAAIAAAAAAA | 7 | 0 | 0 | 7 | AM | third | night | |
| 8 | AAAAAAAAJAAAAAAA | 8 | 0 | 0 | 8 | AM | third | night | |
| 9 | AAAAAAAAKAAAAAAA | 9 | 0 | 0 | 9 | AM | third | night | |
+-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+
Run SQL Query
Queries can be run against one or more tables. Table names are inferred from file names.
$ bdt query --table /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet \
--sql "SELECT COUNT(*) FROM yellow_tripdata_2022_01"
Registering table 'yellow_tripdata_2022_01' for /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet
+-----------------+
| COUNT(UInt8(1)) |
+-----------------+
| 2463931 |
+-----------------+
Use the --tables
option to register all files/directories in one directory as tables, and use the --sql-file
option
to load a query from disk.
$ bdt query --tables /mnt/bigdata/tpch/sf10-parquet/ --sql-file /home/andy/git/sql-benchmarks/sqlbench-h/queries/sf=10/q1.sql`
Registering table 'supplier' for /mnt/bigdata/tpch/sf10-parquet/supplier.parquet
Registering table 'part' for /mnt/bigdata/tpch/sf10-parquet/part.parquet
Registering table 'partsupp' for /mnt/bigdata/tpch/sf10-parquet/partsupp.parquet
Registering table 'nation' for /mnt/bigdata/tpch/sf10-parquet/nation.parquet
Registering table 'region' for /mnt/bigdata/tpch/sf10-parquet/region.parquet
Registering table 'orders' for /mnt/bigdata/tpch/sf10-parquet/orders.parquet
Registering table 'lineitem' for /mnt/bigdata/tpch/sf10-parquet/lineitem.parquet
Registering table 'customer' for /mnt/bigdata/tpch/sf10-parquet/customer.parquet
+--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+
| l_returnflag | l_linestatus | sum_qty | sum_base_price | sum_disc_price | sum_charge | avg_qty | avg_price | avg_disc | count_order |
+--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+
| A | F | 377518277.00 | 566065563002.85 | 537758943278.1740 | 559276505545.688411 | 25.500977 | 38237.155374 | 0.050006 | 14804071 |
| N | F | 9851614.00 | 14767438399.17 | 14028805792.2114 | 14590490998.366737 | 25.522448 | 38257.810660 | 0.049973 | 385998 |
| N | O | 730783087.00 | 1095795289143.27 | 1041001162690.9297 | 1082653834336.561576 | 25.497622 | 38233.198852 | 0.049999 | 28660832 |
| R | F | 377732634.00 | 566430710070.73 | 538110604499.8196 | 559634448619.890015 | 25.508381 | 38251.211480 | 0.049996 | 14808177 |
+--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+
Query results can also be written to disk by specifying an --output
path.
$ bdt query --table /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet \
--sql "SELECT COUNT(*) FROM yellow_tripdata_2022_01" \
--output results.csv
Registering table 'yellow_tripdata_2022_01' for /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet
Writing results in CSV format to results.csv
Convert Parquet to newline-delimited JSON
$ bdt convert /path/to/input.parquet /path/to/output.json
$ cat /path/to/output.json
{"d_date_sk":2415022,"d_date_id":"AAAAAAAAOKJNECAA","d_date":"1900-01-02","d_month_seq":0,"d_week_seq":1,"d_quarter_seq":1,"d_year":1900,"d_dow":1,"d_moy":1,"d_dom":2,"d_qoy":1,"d_fy_year":1900,"d_fy_quarter_seq":1,"d_fy_week_seq":1,"d_day_name":"Monday","d_quarter_name":"1900Q1","d_holiday":"N","d_weekend":"N","d_following_holiday":"Y","d_first_dom":2415021,"d_last_dom":2415020,"d_same_day_ly":2414657,"d_same_day_lq":2414930,"d_current_day":"N","d_current_week":"N","d_current_month":"N","d_current_quarter":"N","d_current_year":"N"}
{"d_date_sk":2415023,"d_date_id":"AAAAAAAAPKJNECAA","d_date":"1900-01-03","d_month_seq":0,"d_week_seq":1,"d_quarter_seq":1,"d_year":1900,"d_dow":2,"d_moy":1,"d_dom":3,"d_qoy":1,"d_fy_year":1900,"d_fy_quarter_seq":1,"d_fy_week_seq":1,"d_day_name":"Tuesday","d_quarter_name":"1900Q1","d_holiday":"N","d_weekend":"N","d_following_holiday":"N","d_first_dom":2415021,"d_last_dom":2415020,"d_same_day_ly":2414658,"d_same_day_lq":2414931,"d_current_day":"N","d_current_week":"N","d_current_month":"N","d_current_quarter":"N","d_current_year":"N"}
View Parquet File Metadata
$ bdt view-parquet-meta /mnt/bigdata/tpcds/sf100-parquet/store_sales.parquet/part-00000-cff04137-32a6-4e5b-811a-668f5d4b1802-c000.snappy.parquet
+------------+----------------------------------------------------------------------------+
| Key | Value |
+------------+----------------------------------------------------------------------------+
| Version | 1 |
| Created By | parquet-mr version 1.10.1 (build a89df8f9932b6ef6633d06069e50c9b7970bebd1) |
| Rows | 40016 |
| Row Groups | 1 |
+------------+----------------------------------------------------------------------------+
Row Group 0 of 1 contains 40016 rows and has 190952 bytes:
+-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+
| Column Name | Logical Type | Physical Type | Distinct Values | Nulls | Min | Max |
+-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+
| cd_demo_sk | N/A | INT32 | N/A | 0 | 1520641 | 1560656 |
| cd_gender | N/A | BYTE_ARRAY | N/A | 0 | [70] | [77] |
| cd_marital_status | N/A | BYTE_ARRAY | N/A | 0 | [68] | [87] |
| cd_education_status | N/A | BYTE_ARRAY | N/A | 0 | [50, 32, 121, 114, 32, 68, 101, 103, 114, 101, 101] | [85, 110, 107, 110, 111, 119, 110] |
| cd_purchase_estimate | N/A | INT32 | N/A | 0 | 500 | 10000 |
| cd_credit_rating | N/A | BYTE_ARRAY | N/A | 0 | [71, 111, 111, 100] | [85, 110, 107, 110, 111, 119, 110] |
| cd_dep_count | N/A | INT32 | N/A | 0 | 0 | 6 |
| cd_dep_employed_count | N/A | INT32 | N/A | 0 | 3 | 4 |
| cd_dep_college_count | N/A | INT32 | N/A | 0 | 5 | 5 |
+-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+
Dependencies
~69MB
~1.5M SLoC