#arrow #apache-arrow #proc-macro #row #array #data #access

macro ar_row_derive

Procedural macros from row-oriented access to Arrow arrays using ar_row

1 unstable release

Uses old Rust 2015

0.6.0 Mar 8, 2024

#57 in #row

GPL-3.0-or-later

69KB
997 lines

ar_row-rs

Row-oriented access to Apache Arrow

Currently, it only allows reading arrays, not building them.

Arrow is a column-oriented data storage format designed to be stored in memory. While a columnar is very efficient, it can be cumbersome to work with, so this crate provides a work to work on rows by "zipping" columns together into classic Rust structures.

This crate was forked from orcxx, an ORC parsing library, by removing the bindings to the underlying ORC C++ library and rewriting the high-level API to operate on Arrow instead of ORC-specific structures.

The ar_row_derive crate provides a custom derive macro.

extern crate ar_row;
extern crate ar_row_derive;
extern crate datafusion_orc;

use std::fs::File;
use std::num::NonZeroU64;

use datafusion_orc::projection::ProjectionMask;
use datafusion_orc::{ArrowReader, ArrowReaderBuilder};

use ar_row::deserialize::{ArRowDeserialize, ArRowStruct};
use ar_row::row_iterator::RowIterator;
use ar_row_derive::ArRowDeserialize;

// Define structure
#[derive(ArRowDeserialize, Clone, Default, Debug, PartialEq, Eq)]
struct Test1 {
    long1: Option<i64>,
}

// Open file
let orc_path = "../test_data/TestOrcFile.test1.orc";
let file = File::open(orc_path).expect("could not open .orc");
let builder = ArrowReaderBuilder::try_new(file).expect("could not make builder");
let projection = ProjectionMask::named_roots(
    builder.file_metadata().root_data_type(),
    &["long1"],
);
let reader = builder.with_projection(projection).build();
let rows: Vec<Option<Test1>> = reader
    .flat_map(|batch| -> Vec<Option<Test1>> {
        <Option<Test1>>::from_record_batch(batch.unwrap()).unwrap()
    })
    .collect();

assert_eq!(
    rows,
    vec![
        Some(Test1 {
            long1: Some(9223372036854775807)
        }),
        Some(Test1 {
            long1: Some(9223372036854775807)
        })
    ]
);

RowIterator API

This API allows reusing the buffer between record batches, but needs RecordBatch instead of Result<RecordBatch, _> as input.

extern crate ar_row;
extern crate ar_row_derive;
extern crate datafusion_orc;

use std::fs::File;
use std::num::NonZeroU64;

use datafusion_orc::projection::ProjectionMask;
use datafusion_orc::{ArrowReader, ArrowReaderBuilder};

use ar_row::deserialize::{ArRowDeserialize, ArRowStruct};
use ar_row::row_iterator::RowIterator;
use ar_row_derive::ArRowDeserialize;

// Define structure
#[derive(ArRowDeserialize, Clone, Default, Debug, PartialEq, Eq)]
struct Test1 {
    long1: Option<i64>,
}

// Open file
let orc_path = "../test_data/TestOrcFile.test1.orc";
let file = File::open(orc_path).expect("could not open .orc");
let builder = ArrowReaderBuilder::try_new(file).expect("could not make builder");
let projection = ProjectionMask::named_roots(
    builder.file_metadata().root_data_type(),
    &["long1"],
);
let reader = builder.with_projection(projection).build();
let mut rows: Vec<Option<Test1>> = RowIterator::new(reader.map(|batch| batch.unwrap()))
    .expect("Could not create iterator")
    .collect();

assert_eq!(
    rows,
    vec![
        Some(Test1 {
            long1: Some(9223372036854775807)
        }),
        Some(Test1 {
            long1: Some(9223372036854775807)
        })
    ]
);

Nested structures

The above two examples also work with nested structures:

extern crate ar_row;
extern crate ar_row_derive;

use ar_row_derive::ArRowDeserialize;

#[derive(ArRowDeserialize, Default, Debug, PartialEq)]
struct Test1Option {
    boolean1: Option<bool>,
    byte1: Option<i8>,
    short1: Option<i16>,
    int1: Option<i32>,
    long1: Option<i64>,
    float1: Option<f32>,
    double1: Option<f64>,
    bytes1: Option<Vec<u8>>,
    string1: Option<String>,
    list: Option<Vec<Option<Test1ItemOption>>>,
}

#[derive(ArRowDeserialize, Default, Debug, PartialEq)]
struct Test1ItemOption {
    int1: Option<i32>,
    string1: Option<String>,
}

Dependencies

~13–21MB
~286K SLoC