3 releases (stable)
Uses old Rust 2015
1.1.0 | Sep 25, 2024 |
---|---|
1.0.0 | Aug 8, 2024 |
0.6.0 | Mar 8, 2024 |
#376 in Encoding
256 downloads per month
Used in 2 crates
56KB
961 lines
ar_row-rs
Row-oriented access to Apache Arrow
Currently, it only allows reading arrays, not building them.
Arrow is a column-oriented data storage format designed to be stored in memory. While a columnar is very efficient, it can be cumbersome to work with, so this crate provides a work to work on rows by "zipping" columns together into classic Rust structures.
This crate was forked from orcxx, an ORC parsing library, by removing the bindings to the underlying ORC C++ library and rewriting the high-level API to operate on Arrow instead of ORC-specific structures.
The ar_row_derive
crate provides a custom derive
macro.
extern crate ar_row;
extern crate ar_row_derive;
extern crate orc_rust;
use std::fs::File;
use std::num::NonZeroU64;
use orc_rust::projection::ProjectionMask;
use orc_rust::{ArrowReader, ArrowReaderBuilder};
use ar_row::deserialize::{ArRowDeserialize, ArRowStruct};
use ar_row::row_iterator::RowIterator;
use ar_row_derive::ArRowDeserialize;
// Define structure
#[derive(ArRowDeserialize, Clone, Default, Debug, PartialEq, Eq)]
struct Test1 {
long1: Option<i64>,
}
// Open file
let orc_path = "../test_data/TestOrcFile.test1.orc";
let file = File::open(orc_path).expect("could not open .orc");
let builder = ArrowReaderBuilder::try_new(file).expect("could not make builder");
let projection = ProjectionMask::named_roots(
builder.file_metadata().root_data_type(),
&["long1"],
);
let reader = builder.with_projection(projection).build();
let rows: Vec<Option<Test1>> = reader
.flat_map(|batch| -> Vec<Option<Test1>> {
<Option<Test1>>::from_record_batch(batch.unwrap()).unwrap()
})
.collect();
assert_eq!(
rows,
vec![
Some(Test1 {
long1: Some(9223372036854775807)
}),
Some(Test1 {
long1: Some(9223372036854775807)
})
]
);
RowIterator
API
This API allows reusing the buffer between record batches, but needs RecordBatch
instead of Result<RecordBatch, _>
as input.
extern crate ar_row;
extern crate ar_row_derive;
extern crate orc_rust;
use std::fs::File;
use std::num::NonZeroU64;
use orc_rust::projection::ProjectionMask;
use orc_rust::{ArrowReader, ArrowReaderBuilder};
use ar_row::deserialize::{ArRowDeserialize, ArRowStruct};
use ar_row::row_iterator::RowIterator;
use ar_row_derive::ArRowDeserialize;
// Define structure
#[derive(ArRowDeserialize, Clone, Default, Debug, PartialEq, Eq)]
struct Test1 {
long1: Option<i64>,
}
// Open file
let orc_path = "../test_data/TestOrcFile.test1.orc";
let file = File::open(orc_path).expect("could not open .orc");
let builder = ArrowReaderBuilder::try_new(file).expect("could not make builder");
let projection = ProjectionMask::named_roots(
builder.file_metadata().root_data_type(),
&["long1"],
);
let reader = builder.with_projection(projection).build();
let mut rows: Vec<Option<Test1>> = RowIterator::new(reader.map(|batch| batch.unwrap()))
.expect("Could not create iterator")
.collect();
assert_eq!(
rows,
vec![
Some(Test1 {
long1: Some(9223372036854775807)
}),
Some(Test1 {
long1: Some(9223372036854775807)
})
]
);
Nested structures
The above two examples also work with nested structures:
extern crate ar_row;
extern crate ar_row_derive;
use ar_row_derive::ArRowDeserialize;
#[derive(ArRowDeserialize, Default, Debug, PartialEq)]
struct Test1Option {
boolean1: Option<bool>,
byte1: Option<i8>,
short1: Option<i16>,
int1: Option<i32>,
long1: Option<i64>,
float1: Option<f32>,
double1: Option<f64>,
bytes1: Option<Box<[u8]>>,
string1: Option<String>,
list: Option<Vec<Option<Test1ItemOption>>>,
}
#[derive(ArRowDeserialize, Default, Debug, PartialEq)]
struct Test1ItemOption {
int1: Option<i32>,
string1: Option<String>,
}
Dependencies
~13–20MB
~286K SLoC