7 releases

new 0.1.7 Nov 1, 2024
0.1.6 Nov 1, 2024
0.1.4 Aug 26, 2024
0.1.3 May 13, 2024

#534 in Procedural macros

Download history 2/week @ 2024-07-12 2/week @ 2024-07-26 1/week @ 2024-08-02 131/week @ 2024-08-23 21/week @ 2024-08-30 9/week @ 2024-09-06 21/week @ 2024-09-13 27/week @ 2024-09-20 23/week @ 2024-09-27 13/week @ 2024-10-04 9/week @ 2024-10-11 9/week @ 2024-10-18 122/week @ 2024-10-25

161 downloads per month

Apache-2.0

36KB
538 lines

Apache License Test Crate Crates.io Total Downloads

approx_derive

approx-derive extends the popular approx by two derive macros AbsDiffEq and RelativeEq. This allows to quickly derive implementations for comparing these types with the macros provided in approx crate.

Documentation

Visit docs.rs to view the documentation.


lib.rs:

This crate provides derive macros for the AbsDiffEq and RelativeEq traits of the approx crate.

These derive macros only implement both traits with ...<Rhs = Self>. The macros infer the EPSILON type of the [AbsDiffEq] trait by looking at the type of the first struct field or any type specified by the user.

This table lists all attributes which can be used to customize the derived traits. They are ordered in descending priority, meaning setting the #[approx(equal)] will overwrite any specifications made in the #[approx(map = ...)] attribute.

Field Attribute Functionality
#[approx(skip)] Skips the field entirely
#[approx(equal)] Checks this field with == for Equality
#[approx(cast_field)] Casts the field with .. as .. syntax.
#[approx(map = ..)] Maps values before comparing them.
#[approx(static_epsilon = ..)] Defines a static epsilon value for this particular field.
Struct Attribute
#[approx(default_epsilon = ...)] Sets the default epsilon value
#[approx(default_max_relative = ...)] Sets the default max_relative value.
#[approx(epsilon_type = ...)] Sets the type of the epsilon value

The following example explains a possible use-case.

use approx_derive::AbsDiffEq;

// Define a new type and derive the AbsDiffEq trait
#[derive(AbsDiffEq, PartialEq, Debug)]
struct Position {
    x: f64,
    y: f64
}

// Compare if two given positions match
// with respect to geiven epsilon.
let p1 = Position { x: 1.01, y: 2.36 };
let p2 = Position { x: 0.99, y: 2.38 };
approx::assert_abs_diff_eq!(p1, p2, epsilon = 0.021);

In this case, the generated code looks something like this:

const _ : () =
{
    #[automatically_derived] impl approx :: AbsDiffEq for Position
    {
        type Epsilon = <f64 as approx::AbsDiffEq>::Epsilon;

        fn default_epsilon() -> Self :: Epsilon {
            <f64 as approx::AbsDiffEq>::default_epsilon()
        }

        fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
            <f64 as approx::AbsDiffEq>::abs_diff_eq(
                &self.x,
                & other.x,
                epsilon.clone()
            ) &&
            <f64 as approx::AbsDiffEq>::abs_diff_eq(
                &self.y,
                &other.y,
                epsilon.clone()
            ) && true
        }
    }
};

The [AbsDiffEq] derive macro calls the abs_diff_eq method repeatedly on all fields to determine if all are matching.

Field Attributes

Skipping Fields

Sometimes, we only want to compare certain fields and omit others completely.

#[derive(AbsDiffEq, PartialEq, Debug)]
struct Player {
    hit_points: f32,
    pos_x: f32,
    pos_y: f32,
    #[approx(skip)]
    id: (usize, usize),
}

let player1 = Player {
    hit_points: 100.0,
    pos_x: 2.0,
    pos_y: -650.345,
    id: (0, 1),
};

let player2 = Player {
    hit_points: 99.9,
    pos_x: 2.001,
    pos_y: -649.898,
    id: (22, 0),
};

approx::assert_abs_diff_eq!(player1, player2, epsilon = 0.5);

Testing for Equality

When identical equality is desired, we can specify this with the #[approx(equal)] attribute.

#[derive(AbsDiffEq, PartialEq, Debug)]
struct Prediction {
    confidence: f64,
    #[approx(equal)]
    category: String,
}

Note that in this case, the type of the epsilon value for the implementation of AbsDiffEq is inferred from the first field of the Prediction struct. This means if we reorder the arguments of the struct, we need to manually set the epsilon type.

#[derive(AbsDiffEq, PartialEq, Debug)]
#[approx(epsilon_type = f64)]
struct Prediction {
    #[approx(equal)]
    category: String,
    confidence: f64,
}

Casting Fields

Structs which consist of multiple fields with different numeric types, can not be derived without additional hints. After all, we should specify how this type mismatch will be handled.

#[derive(AbsDiffEq, PartialEq, Debug)]
struct MyStruct {
    v1: f32,
    v2: f64,
}

We can use the #[approx(cast_field)] and #[approx(cast_value)] attributes to achieve this goal.

#[derive(AbsDiffEq, PartialEq, Debug)]
struct MyStruct {
    v1: f32,
    #[approx(cast_field)]
    v2: f64,
}

Now the second field will be casted to the type of the inferred epsilon value (f32). We can check this by testing if a change in the size of f64::MIN_POSITIVE would get lost by this procedure.

let ms1 = MyStruct {
    v1: 1.0,
    v2: 3.0,
};
let ms2 = MyStruct {
    v1: 1.0,
    v2: 3.0 + f64::MIN_POSITIVE,
};
approx::assert_relative_eq!(ms1, ms2);

Mapping Values

We can map values before comparing them. By default, we need to return an option of the value in question. This allows to do computations where error can occur. Although this error is not caught, the comparison will fail if any of the two compared objects return a None value.

#[derive(AbsDiffEq, PartialEq, Debug)]
struct Tower {
    height_in_meters: f32,
    #[approx(map = |x: &f32| Some(x.sqrt()))]
    area_in_meters_squared: f32,
}

This functionality can also be useful when having more complex datatypes.

#[derive(PartialEq, Debug)]
enum Time {
    Years(u16),
    Months(u16),
    Weeks(u16),
    Days(u16),
}

fn time_to_days(time: &Time) -> Option<u16> {
    match time {
        Time::Years(y) => Some(365 * y),
        Time::Months(m) => Some(30 * m),
        Time::Weeks(w) => Some(7 * w),
        Time::Days(d) => Some(*d),
    }
}

#[derive(AbsDiffEq, PartialEq, Debug)]
#[approx(epsilon_type = u16)]
struct Dog {
    #[approx(map = time_to_days)]
    age: Time,
    #[approx(map = time_to_days)]
    next_doctors_appointment: Time,
}

Static Values

We can force a static EPSILON or max_relative value for individual fields.

#[derive(AbsDiffEq, PartialEq, Debug)]
struct Rectangle {
    #[approx(static_epsilon = 5e-2)]
    a: f64,
    b: f64,
    #[approx(static_epsilon = 7e-2)]
    c: f64,
}

let r1 = Rectangle {
    a: 100.01,
    b: 40.0001,
    c: 30.055,
};
let r2 = Rectangle {
    a: 99.97,
    b: 40.0005,
    c: 30.049,
};

// This is always true although the epsilon is smaller than the
// difference between fields a and b respectively.
approx::assert_abs_diff_eq!(r1, r2, epsilon = 1e-1);
approx::assert_abs_diff_eq!(r1, r2, epsilon = 1e-2);
approx::assert_abs_diff_eq!(r1, r2, epsilon = 1e-3);

// Here, the epsilon value has become larger than the difference between the
// b field values.
approx::assert_abs_diff_ne!(r1, r2, epsilon = 1e-4);

Struct Attributes

Default Epsilon

The [AbsDiffEq] trait allows to specify a default value for its EPSILON associated type. We can control this value by specifying it on a struct level.

#[derive(AbsDiffEq, PartialEq, Debug)]
#[approx(default_epsilon = 10)]
struct Benchmark {
    cycles: u64,
    warm_up: u64,
}

let benchmark1 = Benchmark {
    cycles: 248,
    warm_up: 36,
};
let benchmark2 = Benchmark {
    cycles: 239,
    warm_up: 28,
};

// When testing with not additional arguments, the results match
approx::assert_abs_diff_eq!(benchmark1, benchmark2);
// Once we specify a lower epsilon, the values do not agree anymore.
approx::assert_abs_diff_ne!(benchmark1, benchmark2, epsilon = 5);

Default Max Relative

Similarly to [Default Epsilon], we can also choose a default max_relative devaition.

#[derive(RelativeEq, PartialEq, Debug)]
#[approx(default_max_relative = 0.1)]
struct Benchmark {
    time: f32,
    warm_up: f32,
}

let bench1 = Benchmark {
    time: 3.502785781,
    warm_up: 0.58039458,
};
let bench2 = Benchmark {
    time: 3.7023458,
    warm_up: 0.59015897,
};

approx::assert_relative_eq!(bench1, bench2);
approx::assert_relative_ne!(bench1, bench2, max_relative = 0.05);

Epsilon Type

When specifying nothing, the macros will infer the EPSILON type from the type of the first struct field. This can be problematic in certain scenarios which is why we can also manually specify this type.

#[derive(RelativeEq, PartialEq, Debug)]
#[approx(epsilon_type = f32)]
struct Car {
    #[approx(cast_field)]
    produced_year: u32,
    horse_power: f32,
}

let car1 = Car {
    produced_year: 1992,
    horse_power: 122.87,
};
let car2 = Car {
    produced_year: 2000,
    horse_power: 117.45,
};

approx::assert_relative_eq!(car1, car2, max_relative = 0.05);
approx::assert_relative_ne!(car1, car2, max_relative = 0.01);

Dependencies

~270–730KB
~17K SLoC