17 unstable releases (4 breaking)

✓ Uses Rust 2018 edition

new 0.5.0 May 21, 2020
0.4.4 Mar 6, 2020
0.4.3 Feb 29, 2020
0.3.5 Dec 6, 2019
0.2.0 Jul 18, 2019

#45 in Parser implementations

Download history 42/week @ 2020-01-18 9/week @ 2020-01-25 3/week @ 2020-02-01 12/week @ 2020-02-08 21/week @ 2020-02-15 125/week @ 2020-02-22 50/week @ 2020-02-29 49/week @ 2020-03-07 23/week @ 2020-03-14 112/week @ 2020-03-21 193/week @ 2020-03-28 236/week @ 2020-04-04 112/week @ 2020-04-11 6/week @ 2020-04-18 1/week @ 2020-04-25 4/week @ 2020-05-02

346 downloads per month

GPL-3.0-or-later

1MB
16K SLoC

WLambda - Embeddable Scripting Language for Rust

WLambda is an embeddable dynamic scripting language for Rust, where every value can be called and the syntax is a blend of Perl, Lua, JavaScript and LISP/Scheme/Clojure.

Here are some of its properties:

  • Simple but unique syntax. For a reference look at the WLambda Language Reference and the parser.
  • Easily embeddable into Rust programs due to a simple API.
  • The language is about getting things done quickly, so performance is not a main priority. Current performance is roughly in the ball park of (C)Python or Perl, which means the language is quite possibly too slow where speed is the focus, but fast enough if you do any heavy lifting in Rust.
  • No garbage collector. Memory and resource management relies only on reference counting and RAII. You can create your own drop functions.
  • Preserving Rust safety by not using unsafe.
  • Main data structures are Lists and Maps.
  • No exceptions, except panics. Error handling is accomplished by a specialized data type. It can be thought of as dynamic counterpart of Rust's Result type.
  • Prototyped object orientation.
  • Easy maintenance and hackability of the implementation.
  • Custom user data implementation using VValUserData.
  • Threading support with shared atoms and message queues.
  • Register based VM evaluator and code generator.
  • Builtin pattern matching and structure selector Pattern and Selector Syntax.
  • Has a testable wasm32 version: WASM WLambda Evaluator.

The embedding API and all internal operations rely on a data structure made of VVal nodes.

Here you can find the WLambda Language Reference.

API Hello World

use wlambda::*;

match wlambda::compiler::eval("40 + 2") {
    Ok(v)  => { println!("Output: {}", v.s()); },
    Err(e) => { eprintln!("Error: {}", e); },
}

See further down below for more API usage examples!

WLambda Language Guide

Try out WLambda right away in the WASM WLambda Evaluator.

Variables

!x = 10;        # Variable definition

.x = 20;        # Variable assignment

Operators

!x = (1 + 2) * (8 - 4) / 2;

std:assert_eq x 6;

If

? $true {
    std:displayln "It's true!";
} {
    std:displayln "It's false!";
};
!x = 10 / 2;

? x == 5 {
    std:displayln "x == 5";
};

While

!x = 10;

while x > 0 {
    std:displayln x;

    (x == 5) {
        break[];
    };
    .x = x - 1;
};
!x = 10;

while x > 0 {
    std:displayln x;

    ? x == 5 {
        # break is a function, first arg
        # is the return value for `while`:
        break[];
    };
    .x = x - 1;
};

std:assert_eq x 5;

Counting Loop

!sum = 0;

iter i $i(0, 10, 1) {
    .sum = sum + i;
};

std:assert_eq sum 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;

Endless loop

!x = 10;

while $true {
    std:displayln x;
    .x = x - 1;
    ? x == 0 break[];
};

Functions

!add = { _ + _1 };  # argument names _, _1, _2, ...

!result = add 2 3;

std:assert_eq result 5;

Different function call syntaxes:

!add = {!(x, y) = @;    # named variables, @ evals to list of all args
    x + y
};

std:displayln[add[2, 3]];   # [] parenthesis calling syntax

std:displayln add[2, 3];    # less parenthesis

std:displayln (add 2 3);    # explicit expression delimiting with `( ... )`

std:displayln ~ add 2 3;    # `~` means: evaluate rest as one expression

Returning from nested functions:


!test = \:ret_label_a {!(x) = @;

    # an `if` is actually a call to another function, so we need to
    # dynamically jump upwards the call stack to the given label:
    ? x > 10 {
        return :ret_label_a x * 2;
    };
};

std:assert_eq (test 11) 22;

Vectors

!v = $[1, 2, 3];
v.1 = 5;

std:assert_eq v.1 5;

std:assert_eq (std:pop v) 3;
std:assert_eq (std:pop v) 5;
std:assert_eq (std:pop v) 1;

Iterating over an Vector

!sum = 0;

iter i $[1, 2, 3, 4] { .sum = sum + i; };

std:assert_eq sum 10;

Accumulate values in a vector


!new_vec =
    $@vec iter i $i(0, 4) {
        $+ i;
    };

std:assert_eq (str new_vec) (str $[0,1,2,3]);

Accumulate a sum

!sum =
    $@int iter i $i(0, 4) {
        $+ i;
    };

std:assert_eq sum 1 + 2 + 3;

Hash tables/maps

!m = ${ a = 10, c = 2 };

m.b = m.a + m.c;

std:assert_eq m.b 12;

Strings

!name = "Mr. X";

std:assert_eq name.4 "X";           # index a character
std:assert_eq (name 0 3) "Mr.";     # substring

!stuff = "日本人";
std:assert_eq stuff.0 "";         # Unicode support

Unicode identifiers:

!= "jin";

std:assert_eq 人 "jin";

Builtin (Regex) Pattern Matching

!some_url = "http://crates.io/crates/wlambda";

!crate  = $none;
!domain = $none;

? ($r{$^ (^$+[^:]) \:\/\/ (^$*[^/]) \/crates\/ (^$+[a-z]) } some_url) {
    .domain = $\.2;
    .crate = $\.3;
};

std:assert_eq domain "crates.io";
std:assert_eq crate  "wlambda";

Object Oriented Programming with prototypes

!MyClass = ${
    new = {
        ${
            _proto = $self,
            _data = ${ balance = 0, }
        }
    },
    deposit = {
        $data.balance = $data.balance + _;
    },
};

!account1 = MyClass.new[];

account1.deposit 100;
account1.deposit 50;

std:assert_eq account1._data.balance 150;

Object Oriented Programming with closures


!MyClass = {
    !self = ${ balance = 0, };

    self.deposit = { self.balance = self.balance + _; };

    $:self
};

!account1 = MyClass[];

account1.deposit 100;
account1.deposit 50;

std:assert_eq account1.balance 150;

WLambda Modules

# util.wl:
!@import std std;
!@wlambda;

!@export print_ten = { std:displayln ~ str 10; };

For import you do:

!@import u util;

u:print_ten[]

Example WLambda Code

That was just a quick glance at the WLambda syntax and semantics.

More details for the syntax and the provided global functions can be found in the WLambda Language Reference.

Currently there are many more examples in the test cases in tests/language.rs.

API Usage Examples

Basic API Usage

Here is how you can quickly evaluate a piece of WLambda code:

let s = "$[1,2,3]";
let r = wlambda::compiler::eval(&s).unwrap();
println!("Res: {}", r.s());

More Advanced API Usage

If you want to quickly add some of your own functions, you can use the GlobalEnv add_func method:

use wlambda::vval::{VVal, VValFun, Env};

let global_env = wlambda::GlobalEnv::new_default();
global_env.borrow_mut().add_func(
    "my_crazy_add",
    |env: &mut Env, _argc: usize| {
        Ok(VVal::Int(
              env.arg(0).i() * 11
            + env.arg(1).i() * 13
        ))
    }, Some(2), Some(2));

let mut ctx = wlambda::compiler::EvalContext::new(global_env);

// Please note, you can also add functions later on,
// but this time directly to the EvalContext:

ctx.set_global_var(
    "my_crazy_mul",
    &VValFun::new_fun(|env: &mut Env, _argc: usize| {
       Ok(VVal::Int(
          (env.arg(0).i() + 11)
        * (env.arg(1).i() + 13)))
    }, Some(2), Some(2), false));


let res_add : VVal = ctx.eval("my_crazy_add 2 4").unwrap();
assert_eq!(res_add.i(), 74);

let res_mul : VVal = ctx.eval("my_crazy_mul 2 4").unwrap();
assert_eq!(res_mul.i(), 221);

Maintaining state

use wlambda::*;

let mut ctx = EvalContext::new_default();

ctx.eval("!x = 10").unwrap();

ctx.set_global_var("y", &VVal::Int(32));

let r = ctx.eval("x + y").unwrap();

assert_eq!(r.s(), "42");

Possible Roadmap

There are several things that can be added more or less easily to WLambda. But I am currently working on making the language more complete for real world use. So my current goals are:

  • Improve and further document the VVal API for interacting with WLambda.
  • Improve reference documentation.
  • DONE: Add proper module support (via !@import and !@export).
  • DONE: Add prototyped inheritance for OOP paradigm.
  • DONE: Replace compiler and closure based evaluator with a VM and more or less clever code generator.

License

This project is licensed under the GNU General Public License Version 3 or later.

Conversion to MIT / Apache-2.0

I (WeirdConstructor) herby promise to release WLambda under MIT / Apache-2.0 license if you use it in an open source / free software game (licensed under MIT and/or Apache-2.0) written in Rust (and WLambda) with a playable beta release, non trivial amount of content and enough gameplay to keep me occupied for at least 2 hours. You may use WLambda for your release as if it was released under MIT and/or Apache-2.0. Proper attribution as required by MIT and/or Apache-2.0.

Why GPL?

Picking a license for my code bothered me for a long time. I read many discussions about this topic. Read the license explanations. And discussed this matter with other developers.

First about why I write code for free at all:

  • It's my passion to write computer programs. In my free time I can write the code I want, when I want and the way I want. I can freely allocate my time and freely choose the projects I want to work on.
  • To help a friend or member of my family.
  • To solve a problem I have.

Those are the reasons why I write code for free. Now the reasons why I publish the code, when I could as well keep it to myself:

  • So that it may bring value to users and the free software community.
  • Show my work as an artist.
  • To get into contact with other developers.
  • And it's a nice change to put some more polish on my private projects.

Most of those reasons don't yet justify GPL. The main point of the GPL, as far as I understand: The GPL makes sure the software stays free software until eternity. That the user of the software always stays in control. That the users have at least the means to adapt the software to new platforms or use cases. Even if the original authors don't maintain the software anymore. It ultimately prevents "vendor lock in". I really dislike vendor lock in, especially as developer. Especially as developer I want and need to stay in control of the computers I use.

Another point is, that my work has a value. If I give away my work without any strings attached, I effectively work for free. Work for free for companies. I would compromise the price I can demand for my skill, workforce and time.

This makes two reasons for me to choose the GPL:

  1. I do not want to support vendor lock in scenarios. At least not for free. I want to prevent those when I have a choice. And before you ask, yes I work for a company that sells closed source software. I am not happy about the closed source fact. But it pays my bills and gives me the freedom to write free software in my free time.
  2. I don't want to low ball my own wage and prices by giving away free software with no strings attached (for companies).

If you need a permissive or private license (MIT)

Please contact me if you need a different license and really want to use my code. As long as I am the only author, I can change the license. We might find an agreement.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in WLambda by you, shall be licensed as GPLv3 or later, without any additional terms or conditions.

Author

  • Weird Constructor weirdconstructor@gmail.com (WeirdConstructor on GitHub) (You may find me as WeirdConstructor on the Rust Discord.)

Contributors

Dependencies

~3.5–5MB
~110K SLoC