3 unstable releases
0.2.2 | Jul 18, 2024 |
---|---|
0.2.1 | Jul 18, 2024 |
0.2.0 |
|
0.1.0 | Jul 17, 2024 |
#1318 in Parser implementations
87 downloads per month
100KB
1.5K
SLoC
US Historical Climate Network data downloader
NOAA maintains a dataset of daily climate data for the US from 1875 to present. Data includes daily maximum and minimum temperatures, and precipitation, for 1,200 stations.
The daily raw data is a zipped text format that requires processing for further use:
USC00011084192601TMAX-9999 -9999 -9999 -9999 -9999 -9999 ...
USC00011084192602TMIN 33 6 22 6 67 6 0 6 11 6 17 ...
USC00011084192602PRCP 0 6 381 6 0 6 0 6 0 6 0 ...
...
This repository provides a rust binary that downloads the data, unzips it, and saves it as an Apache Parquet datafile. This file is easy to ingest into a Python dataframe for processing:
id tmax tmin prcp
date
1898-06-14 USC00324418 NaN 6.7 1.2
1898-06-15 USC00324418 NaN 7.8 0.0
1898-06-16 USC00324418 12.3 5.6 0.0
1898-06-17 USC00324418 14.4 8.9 0.1
1898-06-18 USC00324418 19.1 7.2 1.2
...
Usage
> ghcn daily
Downloading
Unpacking
...
File saved to `/Users/richardlyon/ushcn-daily-2024-07-16.parquet`
> ghcn monthly
Downloading
Unpacking
...
File saved to `/Users/richardlyon/ushcn-monthly-2024-07-16.parquet`
> ghcn stations
Downloading
ile saved to `/Users/richardlyon/ghcnd-stations-2024-07-17.parquet`
Not included in this repository are any scripts for processing the data. However, as an example:
import pandas as pd
import matplotlib.pyplot as plt
parquet_file_path = Path("/path/to/ghcnd_hcn.parquet")
df = pd.read_parquet(parquet_file_path)
df.set_index("date", inplace=True)
df = df.groupby(df.index)["tmax"].max()
df.plot(y="tmax", kind="line", title="Max Temp")
Change log
0.2.1 - Fix bug in monthly data download. 0.2.2 - Add lat/lon to daily readings
Dependencies
~37–52MB
~1M SLoC