3 unstable releases

0.2.2 Jul 18, 2024
0.2.1 Jul 18, 2024
0.2.0 Jul 17, 2024
0.1.0 Jul 17, 2024

#1318 in Parser implementations

Download history 2/week @ 2024-09-12 2/week @ 2024-09-26 2/week @ 2024-10-03

87 downloads per month

MIT/Apache

100KB
1.5K SLoC

US Historical Climate Network data downloader

NOAA maintains a dataset of daily climate data for the US from 1875 to present. Data includes daily maximum and minimum temperatures, and precipitation, for 1,200 stations.

The daily raw data is a zipped text format that requires processing for further use:

USC00011084192601TMAX-9999   -9999   -9999   -9999   -9999   -9999 ...
USC00011084192602TMIN   33  6   22  6   67  6    0  6   11  6   17 ...
USC00011084192602PRCP    0  6  381  6    0  6    0  6    0  6    0 ...
...

This repository provides a rust binary that downloads the data, unzips it, and saves it as an Apache Parquet datafile. This file is easy to ingest into a Python dataframe for processing:

                     id   tmax  tmin  prcp
date
1898-06-14  USC00324418   NaN    6.7   1.2
1898-06-15  USC00324418   NaN    7.8   0.0
1898-06-16  USC00324418   12.3   5.6   0.0
1898-06-17  USC00324418   14.4   8.9   0.1
1898-06-18  USC00324418   19.1   7.2   1.2
...

Usage

> ghcn daily
Downloading
Unpacking
...
File saved to `/Users/richardlyon/ushcn-daily-2024-07-16.parquet`

> ghcn monthly
Downloading
Unpacking
...
File saved to `/Users/richardlyon/ushcn-monthly-2024-07-16.parquet`

> ghcn stations
Downloading
ile saved to `/Users/richardlyon/ghcnd-stations-2024-07-17.parquet`

Not included in this repository are any scripts for processing the data. However, as an example:

import pandas as pd
import matplotlib.pyplot as plt

parquet_file_path = Path("/path/to/ghcnd_hcn.parquet")
df = pd.read_parquet(parquet_file_path)
df.set_index("date", inplace=True)
df = df.groupby(df.index)["tmax"].max()
df.plot(y="tmax", kind="line", title="Max Temp")

max_temp

Change log

0.2.1 - Fix bug in monthly data download. 0.2.2 - Add lat/lon to daily readings

Dependencies

~37–52MB
~1M SLoC