#event-processing #events #redis #command #json #indexing #data

bin+lib traqq

High-performance event processing system for Redis data indexing

4 releases

0.1.3 Nov 3, 2024
0.1.2 Nov 3, 2024
0.1.1 Nov 3, 2024
0.1.0 Nov 3, 2024

#581 in Database interfaces

29 downloads per month

MIT license

51KB
1K SLoC

traqq

A high-performance event processing system that transforms JSON events into optimized Redis commands for real-time analytics, enabling complex queries without post-processing.

Performance Highlights

PC: Apple M2 Max 2023 64GB

  • Processing Speed: 40,000+ events/second on a single thread
  • Memory Efficient: ~6.7MB for 5000 test events
  • Concurrent Support: Multi-threaded event processing
  • Scaling Performance:
    • Level 1: ~19,685 events/sec
    • Level 5: ~11,214 events/sec
    • Level 10: ~7,543 events/sec
    • Level 20: ~4,343 events/sec

Quick Start

See main.rs for a basic usage demonstration.

use traqq::prelude::*;

let config = TraqqConfig::default();
let event = IncomingEvent::from_json(serde_json::json!({
    "event": "purchase",
    "amount": 99.99,
    "ip": "127.0.0.1",
    "utm_source": "google",
    "utm_medium": "cpc"
})).unwrap();

match ProcessedEvent::from_incoming(event, &config) {
    Ok(processed) => processed.pretty_print(),
    Err(e) => println!("Error: {}", e),
}

Installation

[dependencies]
traqq = "0.1.3"
# run unit tests
cargo test

# run tests w benchmarking output
cargo test -- --nocapture

# run example
cargo run

Core Features

1. Configuration System

TraqqConfig {
    time: TimeConfig {
        store_hourly: true,
        timezone: "America/New_York".to_string(),
    },
    mapping: MappingConfig {
        bitmap: vec!["ip".to_string()],
        add: vec!["event".to_string()],
        add_value: vec![/* value metrics */],
    },
    limits: LimitsConfig {
        max_field_length: 128,
        max_value_length: 512,
        max_combinations: 1000,
        max_metrics_per_event: 1000,
    },
}

2. Event Processing Pipeline

  1. Event Ingestion
  2. Sanitization
  3. Property Extraction
  4. Metric Generation
  5. Redis Command Generation

3. Redis Integration

Key Structure

<metric_type>:<bucket_type>:<timestamp>:<pattern>:<values>

Example Commands

PFADD bmp:d:1696118400:ip 127.0.0.1
INCR add:d:1696118400:event:purchase
INCRBY adv:d:1696118400:amount:event:purchase 99.99

Components

  • Core Types: TraqqConfig, IncomingEvent, ProcessedEvent, RedisCommand, RedisCommandType
  • Utility Modules: constants.rs, utils.rs

Development Status

Implemented

  • Event parsing and validation
  • Property sanitization
  • Compound key generation
  • Metric generation
  • Concurrent processing
  • Performance benchmarking

Planned

  • Redis command preparation
  • Redis pipeline execution
  • Redis query interface
  • WebAssembly module
  • Command line interface
  • Additional storage adapter support

License

MIT

Dependencies

~2.4–4MB
~67K SLoC