#curve25519 #ristretto #curve-point #ristretto255 #crypto #anonymous-credentials

no-std test-curve25519-dalek

A pure-Rust implementation of group operations on ristretto255 and Curve25519

10 releases

4.0.0-rc.1 Feb 2, 2023
4.0.0-pre.17 Dec 14, 2022
4.0.0-pre.10 Nov 27, 2022

#908 in Cryptography

Download history 2/week @ 2024-09-18 4/week @ 2024-09-25 3/week @ 2024-10-02 34/week @ 2024-11-27 111/week @ 2024-12-04 8/week @ 2024-12-11

141 downloads per month

BSD-3-Clause

1MB
25K SLoC

curve25519-dalek Rust

dalek-cryptography logo: a dalek with edwards curves as sparkles coming out of its radar-schnozzley blaster thingies

A pure-Rust implementation of group operations on Ristretto and Curve25519.

curve25519-dalek is a library providing group operations on the Edwards and Montgomery forms of Curve25519, and on the prime-order Ristretto group.

curve25519-dalek is not intended to provide implementations of any particular crypto protocol. Rather, implementations of those protocols (such as x25519-dalek and ed25519-dalek) should use curve25519-dalek as a library.

curve25519-dalek is intended to provide a clean and safe mid-level API for use implementing a wide range of ECC-based crypto protocols, such as key agreement, signatures, anonymous credentials, rangeproofs, and zero-knowledge proof systems.

In particular, curve25519-dalek implements Ristretto, which constructs a prime-order group from a non-prime-order Edwards curve. This provides the speed and safety benefits of Edwards curve arithmetic, without the pitfalls of cofactor-related abstraction mismatches.

Use

Stable

To import curve25519-dalek, add the following to the dependencies section of your project's Cargo.toml:

curve25519-dalek = "3"

Beta

To use the latest prerelease (see changes below), use the following line in your project's Cargo.toml:

curve25519-dalek = "4.0.0-rc.0"

Feature Flags

Feature Default? Description
alloc Enables Edwards and Ristretto multiscalar multiplication, batch scalar inversion, and batch Ristretto double-and-compress. Also enables zeroize.
zeroize Enables Zeroize for all scalar and curve point types.
precomputed-tables Includes precomputed basepoint multiplication tables. This speeds up EdwardsPoint::mul_base and RistrettoPoint::mul_base by ~4x, at the cost of ~30KB added to the code size.
rand_core Enables Scalar::random and RistrettoPoint::random. This is an optional dependency whose version is not subject to SemVer. See below for more details.
digest Enables RistrettoPoint::{from_hash, hash_from_bytes} and Scalar::{from_hash, hash_from_bytes}. This is an optional dependency whose version is not subject to SemVer. See below for more details.
serde Enables serde serialization/deserialization for all the point and scalar types.

To disable the default features when using curve25519-dalek as a dependency, add default-features = false to the dependency in your Cargo.toml. To disable it when running cargo, add the --no-default-features CLI flag.

Major Version API Changes

Breaking changes for each major version release can be found in CHANGELOG.md, under the "Breaking changes" subheader. The latest breaking changes are below:

Breaking changes in 4.0.0

  • Update the MSRV from 1.41 to 1.60
  • Update backend selection to be more automatic. See backends
  • Remove std feature flag
  • Remove nightly feature flag
  • Make digest an optional feature
  • Make rand_core an optional feature
  • Replace methods Scalar::{zero, one} with constants Scalar::{ZERO, ONE}
  • Scalar::from_canonical_bytes now returns CtOption
  • Scalar::is_canonical now returns Choice
  • Deprecate EdwardsPoint::hash_from_bytes and rename it EdwardsPoint::nonspec_map_to_curve
  • Require including a new trait, use curve25519_dalek::traits::BasepointTable whenever using EdwardsBasepointTable or RistrettoBasepointTable

This release also does a lot of dependency updates and relaxations to unblock upstream build issues.

Backends

Curve arithmetic is implemented and used by selecting one of the following backends:

Backend Implementation Target backends
[default] Serial formulas u32
u64
simd Parallel, using Advanced Vector Extensions avx2
avx512ifma
fiat Formally verified field arithmetic from fiat-crypto fiat_u32
fiat_u64

To choose a backend other than the [default] serial backend, set the environment variable:

RUSTFLAGS='--cfg curve25519_dalek_backend="BACKEND"'

where BACKEND is simd or fiat. Equivalently, you can write to ~/.cargo/config:

[build]
rustflags = ['--cfg=curve25519_dalek_backend="BACKEND"']

More info here.

The simd backend requires extra configuration. See the SIMD section.

Note for contributors: The target backends are not entirely independent of each other. The simd backend directly depends on parts of the the u64 backend to function.

Word size for serial backends

curve25519-dalek will automatically choose the word size for the [default] and fiat serial backends, based on the build target. For example, building for a 64-bit machine, the default u64 target backend is automatically chosen when the [default] backend is selected, and fiat_u64 is chosen when the `fiat backend is selected.

Backend word size can be overridden for [default] and fiat by setting the environment variable:

RUSTFLAGS='--cfg curve25519_dalek_bits="SIZE"'

where SIZE is 32 or 64. As in the above section, this can also be placed in ~/.cargo/config.

NOTE: The simd backend CANNOT be used with word size 32.

Cross-compilation

Because backend selection is done by target, cross-compiling will select the correct word size automatically. For example, on an x86-64 Linux machine, curve25519-dalek will use the u32 target backend if the following is run:

$ sudo apt install gcc-multilib # (or whatever package manager you use)
$ rustup target add i686-unknown-linux-gnu
$ cargo build --target i686-unknown-linux-gnu

SIMD target backends

Target backend selection within simd must be done manually by setting the RUSTFLAGS environment variable to one of the below options:

CPU feature RUSTFLAGS
avx2 -C target_feature=+avx2
avx512ifma -C target_feature=+avx512ifma

Or you can use -C target_cpu=native if you don't know what to set.

The simd backend also requires using nightly, e.g. by running cargo +nightly build, to build.

Documentation

The semver-stable, public-facing curve25519-dalek API is documented here.

Building Docs Locally

The curve25519-dalek documentation requires a custom HTML header to include KaTeX for math support. Unfortunately cargo doc does not currently support this, but docs can be built using

make doc

for regular docs, and

make doc-internal

for docs that include private items.

Maintenance Policies

All on-by-default features of this library are covered by semantic versioning (SemVer). SemVer exemptions are outlined below for MSRV and public API.

Minimum Supported Rust Version

Releases MSRV
4.x 1.60.0
3.x 1.41.0

From 4.x and on, MSRV changes will be accompanied by a minor version bump.

Public API SemVer Exemptions

Breaking changes to SemVer exempted components affecting the public API will be accompanied by some version bump. Below are the specific policies:

Releases Public API Component(s) Policy
4.x Dependencies digest and rand_core Minor SemVer bump

Safety

The curve25519-dalek types are designed to make illegal states unrepresentable. For example, any instance of an EdwardsPoint is guaranteed to hold a point on the Edwards curve, and any instance of a RistrettoPoint is guaranteed to hold a valid point in the Ristretto group.

All operations are implemented using constant-time logic (no secret-dependent branches, no secret-dependent memory accesses), unless specifically marked as being variable-time code. We believe that our constant-time logic is lowered to constant-time assembly, at least on x86_64 targets.

As an additional guard against possible future compiler optimizations, the subtle crate places an optimization barrier before every conditional move or assignment. More details can be found in the documentation for the subtle crate.

Some functionality (e.g., multiscalar multiplication or batch inversion) requires heap allocation for temporary buffers. All heap-allocated buffers of potentially secret data are explicitly zeroed before release.

However, we do not attempt to zero stack data, for two reasons. First, it's not possible to do so correctly: we don't have control over stack allocations, so there's no way to know how much data to wipe. Second, because curve25519-dalek provides a mid-level API, the correct place to start zeroing stack data is likely not at the entrypoints of curve25519-dalek functions, but at the entrypoints of functions in other crates.

The implementation is memory-safe, and contains no significant unsafe code. The SIMD backend uses unsafe internally to call SIMD intrinsics. These are marked unsafe only because invoking them on an inappropriate CPU would cause SIGILL, but the entire backend is only compiled with appropriate target_features, so this cannot occur.

Performance

Benchmarks are run using criterion.rs:

cargo bench --features "rand_core"
# Uses avx2 or ifma only if compiled for an appropriate target.
export RUSTFLAGS='--cfg curve25519_dalek_backend="simd" -C target_cpu=native'
cargo +nightly bench --features "rand_core"

Performance is a secondary goal behind correctness, safety, and clarity, but we aim to be competitive with other implementations.

FFI

Unfortunately, we have no plans to add FFI to curve25519-dalek directly. The reason is that we use Rust features to provide an API that maintains safety invariants, which are not possible to maintain across an FFI boundary. For instance, as described in the Safety section above, invalid points are impossible to construct, and this would not be the case if we exposed point operations over FFI.

However, curve25519-dalek is designed as a mid-level API, aimed at implementing other, higher-level primitives. Instead of providing FFI at the mid-level, our suggestion is to implement the higher-level primitive (a signature, PAKE, ZKP, etc) in Rust, using curve25519-dalek as a dependency, and have that crate provide a minimal, byte-buffer-oriented FFI specific to that primitive.

Contributing

Please see CONTRIBUTING.md.

Patches and pull requests should be make against the develop branch, not main.

About

SPOILER ALERT: The Twelfth Doctor's first encounter with the Daleks is in his second full episode, "Into the Dalek". A beleaguered ship of the "Combined Galactic Resistance" has discovered a broken Dalek that has turned "good", desiring to kill all other Daleks. The Doctor, Clara and a team of soldiers are miniaturized and enter the Dalek, which the Doctor names Rusty. They repair the damage, but accidentally restore it to its original nature, causing it to go on the rampage and alert the Dalek fleet to the whereabouts of the rebel ship. However, the Doctor manages to return Rusty to its previous state by linking his mind with the Dalek's: Rusty shares the Doctor's view of the universe's beauty, but also his deep hatred of the Daleks. Rusty destroys the other Daleks and departs the ship, determined to track down and bring an end to the Dalek race.

curve25519-dalek is authored by Isis Agora Lovecruft and Henry de Valence.

Portions of this library were originally a port of Adam Langley's Golang ed25519 library, which was in turn a port of the reference ref10 implementation. Most of this code, including the 32-bit field arithmetic, has since been rewritten.

The fast u32 and u64 scalar arithmetic was implemented by Andrew Moon, and the addition chain for scalar inversion was provided by Brian Smith. The optimised batch inversion was contributed by Sean Bowe and Daira Hopwood.

The no_std and zeroize support was contributed by Tony Arcieri.

The formally verified fiat_backend integrates Rust code generated by the Fiat Crypto project and was contributed by François Garillot.

Thanks also to Ashley Hauck, Lucas Salibian, Manish Goregaokar, Jack Grigg, Pratyush Mishra, Michael Rosenberg, @pinkforest, and countless others for their contributions.

Dependencies