#sample-rate #dsp

simple_src

A simple sample rate conversion lib for audio

3 releases (breaking)

0.3.0 Oct 19, 2024
0.2.0 Oct 15, 2024
0.1.0 Sep 14, 2024

#230 in Audio

MIT license

32KB
693 lines

simple_src

A simple sample rate conversion lib for audio.

Usage

Usually use sinc Converter, it is flexible and high-quality. The linear Converter is not recommended unless performance is really important and quality is not cared.

sinc

With new method:

use simple_src::{sinc, Convert};

let samples = vec![1.0, 2.0, 3.0, 4.0];
let manager = sinc::Manager::new(2.0, 48.0, 8, 0.1).unwrap();
let mut converter = manager.converter();
for s in converter.process(samples.into_iter()) {
    println!("{s}");
}

Or use builder:

use simple_src::{sinc, Convert};

let samples = vec![1.0, 2.0, 3.0, 4.0];
let manager = sinc::Manager::builder()
    .ratio(2.0)
    .attenuation(48.0)
    .quantify(8)
    .pass_width(0.9)
    .build()
    .unwrap();
let mut converter = manager.converter();
for s in converter.process(samples.into_iter()) {
    println!("{s}");
}

For multi-channel example see two_channels.rs.

linear

use simple_src::{linear, Convert};

let samples = vec![1.0, 2.0, 3.0, 4.0];
let manager = linear::Manager::new(2.0).unwrap();
let mut converter = manager.converter();
for s in converter.process(samples.into_iter()) {
    println!("{s}");
}

Sinc parameters

Recommended initialization parameters for sinc converter:

attenuation quantify
8bit fast 48 8
8bit medium 60 16
8bit better 72 32
16bit lower 84 64
16bit fast 96 128
16bit medium 108 256
16bit better 120 512
24bit lower 132 1024
24bit fast 144 2048
24bit medium 156 4096
24bit better 168 8192

The relationship between attenuation and quantify is about Q = 2 ^ (A / 12 - 1), A = 12 + 12 * log2(Q).

Due to the amount of calculation and the size of LUT, A = 144 or 156 for 24bit audio is usually fine, and for 16bit, A = 120 is enough.

Plots

Use plots.py to show the results of conversion. It needs numpy, scipy and matplotlib.

Here is an example showing the results of a downsampling 96kHz:

$ cargo test -r --test testwav -- --ignored --exact --show-output generate
$ cargo test -r --test sinc -- --ignored --exact --show-output ta120_2_96k_down
$ python
>>> import plots
>>> import os
>>> os.chdir('output')
>>> plots.spectrum('beep_96k_44k_s_a120_2.wav')
>>> plots.spectrogram('sweep_96k_44k_s_a120_2.wav')
>>> plots.impulse('impulse_96k_44k_s_a120_2.wav')
>>> plots.impulse('impulse_96k_44k_s_a120_2.wav', True)

See code in tests for more details.

References

  1. Smith, J.O. Digital Audio Resampling Home Page https://ccrma.stanford.edu/~jos/resample/.
  2. Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing, Third Edition.

Dependencies

~310KB