#text-to-speech #embedding #diarization #sherpa

sys sherpa-rs-sys

Rust bindings to https://github.com/k2-fsa/sherpa-onnx

38 releases (5 breaking)

0.6.6 Feb 25, 2025
0.6.1 Dec 25, 2024
0.5.1 Oct 25, 2024
0.1.7-beta.0 Jul 13, 2024

#1333 in Audio

Download history 81/week @ 2024-12-31 119/week @ 2025-01-07 478/week @ 2025-01-14 61/week @ 2025-01-21 12/week @ 2025-01-28 13/week @ 2025-02-04 268/week @ 2025-02-11 56/week @ 2025-02-18 192/week @ 2025-02-25 62/week @ 2025-03-04 36/week @ 2025-03-11 28/week @ 2025-03-18 41/week @ 2025-03-25 24/week @ 2025-04-01 33/week @ 2025-04-08 35/week @ 2025-04-15

141 downloads per month
Used in 2 crates

MIT license

2.5MB
57K SLoC

C++ 34K SLoC // 0.1% comments Kotlin 11K SLoC // 0.1% comments Java 3.5K SLoC // 0.0% comments Dart 3K SLoC // 0.0% comments C 2.5K SLoC // 0.2% comments Batch 1K SLoC Rust 660 SLoC // 0.1% comments Prolog 270 SLoC Python 150 SLoC // 0.2% comments TypeScript 67 SLoC Shell 38 SLoC // 0.1% comments Forge Config 2 SLoC

Contains (JAR file, 60KB) gradle-wrapper.jar, (JAR file, 60KB) gradle-wrapper.jar, (JAR file, 60KB) gradle-wrapper.jar, (JAR file, 60KB) gradle-wrapper.jar, (JAR file, 60KB) gradle-wrapper.jar, (JAR file, 60KB) gradle-wrapper.jar and 9 more.

sherpa-rs

Crates License

Rust bindings to sherpa-onnx

Features

  • Spoken language detection
  • Speaker embedding (labeling)
  • Speaker diarization
  • Speech to text
  • Text to speech
  • Text punctuation
  • Voice activity detection
  • Audio tagging
  • Keyword spotting

Supported Platforms

  • Windows
  • Linux
  • macOS
  • Android
  • IOS

Install

cargo add sherpa-rs

Build

Please see BUILDING.md.

Feature flags

  • cuda: enable CUDA support
  • directml: enable DirectML support
  • tts: enable TTS
  • download-binaries: use prebuilt sherpa-onnx libraries for faster builds. cached.
  • static: use static sherpa-onnx libraries and link them statically.
  • sys: expose raw c bindings (sys crate)

Documentation

For the documentation on sherpa_rs, please visit docs.rs/sherpa_rs.

For documentation on sherpa-onnx, refer to the sherpa/intro.html.

Examples

See examples

Models

All pretrained models available at sherpa/onnx/pretrained_models

No runtime deps